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Abstract

Barroca, Marco Antonio Guimarães Auad; Guerreiro, Thiago Barbosa
dos Santos (Advisor). Computational perspectives on anyon inter-
ferometry. Rio de Janeiro, 2020. 103p. Dissertação de Mestrado – De-
partamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Interferometry has been used to study a variety of physical effects, from
the early experiments of Michelson and Morley that provided evidence to
special relativity to the more recent gravity-wave detection devices used by
the Laser Interferometer Gravitational-Wave Observatory (LIGO) experiment.
The purpose of this thesis is to understand how one can exploit anyons and
its unique characteristics to build interferometers, and understand whether
there are immediate advantages in doing so. Anyons are two-dimensional
quasiparticles known for their unusual fractional statistics and applications
in quantum computing models. To study their usefulness in the context of
interferometry, we present a quantum computational approach to interference
experiments. Next we give an introduction to anyon models and how they
can be used to perform universal quantum computing. We propose a quantum
circuit which implements a certain type of interferometer, and how it can be
realized in different anyon models. Finally, we discuss a quantum computing
model based on linear optics with fermionic anyons that would enable the
creation of a logical version of our interferometer in terms of a physical
interferometer.

Keywords
Anyon; Interferometry; Topology; Quantum Computation; Quan-

tum Metrology.
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Resumo

Barroca, Marco Antonio Guimarães Auad; Guerreiro, Thiago Barbosa
dos Santos. Perspectivas computacionais em interferometria de
anyons. Rio de Janeiro, 2020. 103p. Dissertação de Mestrado – Depar-
tamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Interferometria tem sido utilizada para estudar uma variedade de efeitos
físicos, desde os experimentos iniciais de Michelson e Morley que forneceram
evidências para a teoria da relatividade restrita até os aparelhos de detecção
de ondas gravitacionais utilizado no Laser Interferometer Gravitational-Wave
Observatory (LIGO). O Propósito dessa dissertação é entender como explorar
anyons e suas características únicas para construir interferômetros. Anyons
são quasipartículas bi-dimensionais conhecidas por apresentarem estatística
fracionária e possuírem aplicações em modelos de computação quântica. Para
estudar sua utilidade no contexto de interferometria nós apresentamos uma
perspectiva de computação quântica para experimentos de interferência. Em
seguida, introduzimos modelos anyônicos e suas aplicações em computação
quântica universal. Propomos um circuito quântico que implementa um certo
tipo de interferômetro, e como realizá-lo em diferentes modelos anyônicos.
Finalmente, discutimos um modelo de computação quântica baseado em ótica
linear de anyons fermiônicos que permitiria a criação de uma versão lógica do
nosso interferômetro em termos de um interferômetro físico.

Palavras-chave
Anyon; Interferometria; Topologia; Computação Quântica; Me-

trologia Quântica.
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There is no such thing as a new idea. It is
impossible. We simply take a lot of old ideas

and put them into a sort of mental
kaleidoscope.

Mark Twain, Mark Twain’s Own Autobiography: The Chapters from the
North American Review.
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1
Introduction

Interferometry has cemented itself in modern physics as one of the most
important methods of acquiring information from optical setups. It has left
its mark in history by confirming special relativity with the fabled "failed
experiment" of Michelson and Morley [1] and continues to have relevance to this
day, being utilized by the Laser Interferometer Gravitational-wave Observatory
(LIGO) to search for evidences of gravitational waves predicted by General
Relativity [2].

The idea behind such experiments is that a phenomenon that is of interest
causes a phase shift between beams of photons, atoms or even electrons, which
in turn will lead to an interference pattern being formed. This pattern can
then be detected and analyzed to better understand the original phenomenon.
It is especially useful in cases where we are searching for minuscule effects that
can be amplified by studying the interference pattern. The LIGO experiment
is one of such cases.

The LIGO experiment plays an important role because it is the first one
to reach the famous standard quantum limit. The phase difference φ it detects
between the interferometer arms is affected by the uncertainty ∆φ ∝ 1/

√
〈N〉

where 〈N〉 is the mean number of photons in the interferometer. This is known
as the shot noise and is the dominant source of noise for experiments in
gravitational wave detection [2].

Fortunately, the shot noise is not a lower bound for interferometry. By
exploiting squeezed states one can theoretically reach a scaling of 1/〈N〉 while
increasing the uncertainty ∆N , which is known as the Heisenberg limit. There
have been a number of attempts to create setups that can reach such limit the
most common of which utilize the concept of NOON states [3]. Unfortunately
this becomes non-trivial for high number of photons.

Enter anyons, differently from photons which are by definition bosons
(particles with integer spin), these 2D quasi-particles have fractional spin.
The immediate consequence of this is that particle exchange will produce
an arbitrary complex phase in the system’s wave-function whereas with the
exchange of photons the wave-function would not change at all. In more
extreme cases anyons can even execute non-trivial unitary operations on the
wave-function [4].

In this thesis we seek to understand if there are any benefits that can be
gained from using these fractional spin particles for interferometry. Ideally we
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Chapter 1. Introduction 16

want to create a setup for anyons that is capable of reaching the Heisenberg
limit.

To do so we take a different approach to interferometry and present it as
a program on a quantum computer. As anyons have remarkable applications
in quantum information [5], if we have a computer model that relies on anyons
for its operation we are able to reproduce our program on it and consequently
create an anyon interferometer.

This approach pays off because it allowed us to create a NOON-like
interferometer that is scalable and capable of creating GHZ states, which means
we can increase the number of particles/qubits by increasing the size of the
setup and the amount of operations. It also gives us the opportunity to execute
it on any universal quantum computer which we are able to do thanks to IBM’s
Qiskit software development kit and quantum computers available for public
use.

By looking at quantum computer models involving anyons we encoun-
tered two optimal candidates to implement our interferometer. The first one
describes the simplest universal quantum computer involving anyons known
as Fibbonaci anyons [6]. The second one uses fermionic anyon linear optics
to perform universal quantum computation. This model is particulalrly inter-
esting because it relies only on linear optical elements, such as beamsplitters
and phase-shifters [7]. This way we can build a physical interferometer capable
of doing NOON-like interferometry in the logical space. We then exhibit our
NOON-like interferometer in both models.

This document is structured as follows:
In Chapter 2 we present a review on interferometry and how particle

statistics, bosonic or fermionic, can affect the results helping us define an
optimal setup to work on. We introduce concepts and tools that help us
analyze inerferometry setups such as phase resolution, NOON states and,
the Heisenberg limit and the Jordan-Schwinger map. Finally, we present an
approach to interferometry in the context of quantum information and a
NOON-like interefrometer that can be reproduced in any quantum computer.
We also analyze this interferometer on real quantum devices with the help of
the Qiskit software development kit and IBM’s quantum computers.

In Chapter 3 we present a review on anyons in a context that is relevant
to quantum information. We go through the differences between abelian and
non-abelian anyon models, how to define an anyon model and present a simple
model that has direct applications in quantum information, Fibbonacci anyons.
Ultimately we present our NOON-like interferometer for Fibonacci anyons.

Chapter 4 unites the topics discussed previously and presents a new
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Chapter 1. Introduction 17

computational model based on linear optics for fermionic anyons created by
Tosta et al. [7]. We use it to suggest a new NOON-like interferometer in a setup
that relies only on anyonic beamsplitters and phase-shifters. To demonstrate
the effectivenes of this new intereferometer we implement it on IBM’s quantum
computer with the help of Qiskit as was done on Chapter 2.

Finally, in Chapter 5 we review the thesis, present our conclusions and
discuss possible future work related to the interferometer here presented.
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2
Interferometry and Quantum Information

In this chapter we discuss interferometry phenomena for general particle
statistics, in particular bosonic and fermionic. We deal with different quantum
states in the photon number basis and present a quantum circuit approach
that illustrates some of the ideas we will discuss throughout the thesis.

2.1
Bosons

Bosonic statistics can be grasped by looking at the commutation relations
between creation and annihilation operators of a boson field:

[a†i , a
†
j] = [ai, aj] = 0 (2-1a)

[ai, a†j] = aia
†
j − a

†
jai = δij, (2-1b)

where i and j represent different modes of the field and δij is the Kronecker-
delta [8]. From these relations one can see that there are no restrictions as to
how many particles one can have in the same quantum state and that Bosons
are symmetric under exchange of particles. This means that if we exchange
two bosons the total system wave-funtion acquires phase +1. We will soon see
how this can affect interferometry.

2.1.1
Mach-Zehnder Interferometer

The Mach-Zehnder interferometer (MZI) is an apparatus first proposed
by Ludwig Mach and Ludwig Zehnder for the purpose of measuring relative
phase shifts between two beams of light originating from a common source [9].
It has the following protocol: The beam enters the first beamsplitter (BS), the
outputs are then reflected by mirrors on each arm, which finally go through a
second BS reaching two detectors. The beamsplitter is a device that will split
the beam of light into two different paths. We can see a diagram of it on figure
2.1.
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Chapter 2. Interferometry and Quantum Information 19

Figure 2.1: Schematic of an MZI. The beam comes from a source and enters
the first beamsplitter (BS), the split beams are reflected by mirrors on each
arm. Finally they go through the second BS and head to the detectors.

It is interesting to consider the action of the MZI in a one-particle wave
function; for that we need to understand how the BS acts on one-particle
states.

Upon entering the first BS, disconsidering any losses, the creation oper-
ators in modes i and j transform according to:

a†i →
√
Ta†i + i

√
1− Ta†j (2-2a)

a†j →
√
Ta†j + i

√
1− Ta†i . (2-2b)

Taking the complex conjugate of the above gives us the annihilation operators:

ai →
√
Tai − i

√
1− Taj (2-3a)

aj →
√
Taj − i

√
1− Tai, (2-3b)

where T is the transmission coefficient of the BS and 1− T = R the reflection
coefficient.

A single particle state (|1〉|0〉 = a†i |0〉|0〉 in mode i or |0〉|1〉 = a†j|0〉|0〉 in
mode j) would then be transformed as:

|1〉|0〉 →
√
T |1〉|0〉+ i

√
1− T |0〉|1〉 (2-4a)

|0〉|1〉 →
√
T |0〉|1〉+ i

√
1− T |1〉|0〉. (2-4b)

The interferometer is composed of two BSs, meaning that the operation
described previously will occur twice. Directly applying two BSs for a single
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Chapter 2. Interferometry and Quantum Information 20

particle state results in:

|1〉|0〉 →
√
T |1〉|0〉+ i

√
1− T |0〉|1〉 → (2T − 1)|1〉|0〉+ 2i

√
T − T 2|0〉|1〉

(2-5a)

|0〉|1〉 →
√
T |0〉|1〉+ i

√
1− T |1〉|0〉 → 2i

√
T − T 2|1〉|0〉+ (2T − 1)|0〉|1〉.

(2-5b)

Note that for T = 1/2 we have |0〉|1〉 → |1〉|0〉.
We can add a relative phase eiθ between the interferometer arms so

that an interference pattern appears. Normally this phase would be physically
created by an effect we are interested in studying with the device as we will
soon mention.

With a relative phase the equation above becomes

|1〉|0〉 →
√
T |1〉|0〉+ ieiθ

√
1− T |0〉|1〉 → (2-6a)

→ (T (1 + eiθ)− eiθ)|1〉|0〉+ i
√
T − T 2(1 + eiθ)|0〉|1〉

|0〉|1〉 →
√
T |0〉|1〉+ ieiθ

√
1− T |1〉|0〉 → (2-6b)

→ i
√
T − T 2(1 + eiθ)|1〉|0〉+ (T (1 + eiθ)− eiθ)|0〉|1〉.

For T = 1/2 the probabilities of detection for input |1〉|0〉 are given by:

P (1, 0) = |12(1− eiθ)|2 = 1
2 (1− cos θ) , (2-7a)

P (0, 1) = |12i(1 + eiθ)|2 = 1
2 (1 + cos θ) . (2-7b)

We can also extended this to two-particle states such as |1〉|1〉 with each
boson sent to a different input and analyse the effects of a MZI on it. After
going through the first BS:

|1〉|1〉 → i
√
T
√

1− T |2〉|0〉+i
√
T
√

1− T |0〉|2〉+T |1〉|1〉−(1−T )|1〉|1〉. (2-8)

Note that the state |1〉|1〉 cancels for T = 1/2 due to equations (2-1a) and
(2-1b); this is the Hong-Ou-Mandel Effect first presented in 1987 [10]. Every
time a boson goes through a BS it has two possible outcomes, either reflection
(R) or transmission (T). When two bosons are input in each port of a BS
logically there are now four possible outcomes TT, RR, TR, RT. The final
state is given by the sum of probability amplitudes for all four possibilities
with the condition that reflection gives a relative phase of π/2, as can be seen
on figure 2.2.
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Chapter 2. Interferometry and Quantum Information 21

Figure 2.2: Diagram summing the probability amplitudes for the Hong-Ou
Mandel Effect. Note that reflections give a relative phase.

This is an example of boson "bunching", identical bosons must have
symmetric wave functions. Soon we will see how that contrasts with different
statistics, such as the fermionic.

Going back to the interferometer, applying the second BS to equation
(2-8) and making T = 1/2 the state now reads:

|1〉|1〉 → 1
2 |2〉|0〉+ 1

2 |0〉|2〉 → |1〉|1〉. (2-9)

We can then add the relative phase:

|1〉|1〉 → 1
2 |2〉|0〉+ 1

2e
2iθ|0〉|2〉 → (2-10)

→ 1
2
√

2
(1− e2iθ)|2〉|0〉+ i

1
2(1 + e2iθ)|1〉|1〉 − 1

2
√

2
(1− e2iθ)|0〉|2〉.

It stands to reason that if we increase the number of inputs to two
particles so would the relative phase increase to ei2θ. This comes from the
fact that N and θ are conjugate variables, so phase displacements are given by
eiNθ.

Finally, the probabilities are given by:

P (2, 0) = | 1
2
√

2
(1− e2iθ)|2 = 1

4 (1− cos 2θ) , (2-11a)

P (0, 2) = | 1
2
√

2
(1− e2iθ)|2 = 1

4 (1− cos 2θ) , (2-11b)

P (1, 1) = |12i(1 + e2iθ)|2 = 1
2 (1 + cos 2θ) . (2-11c)

Note that the probabilities depend on the relative phase between the
arms on both cases mentioned and that in the two-particle case it oscillates
twice as fast with respect to the one-particle.

Ultimately this shows us how the interference pattern relates to the phase,
θ = mπ

2 for integer m means destructive interference and θ = (2m + 1)π4
means constructive interference, while probabilities are distributed across the
quantum states. It is reasonable to expect that this might allow us to have
twice as much phase resolution.
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Also interesting is the fact that the probabilities depend on the number
of particles. This can be used as a resource to obtain better phase resolutions in
interferometry and as we will see, this idea leads to the notion of the so-called
Heisenberg Limit.

Any phenomena that creates a relative phase could be studied with
interferometers. Some examples are Gravity wave detection, flow visualization
in aerodynamics and plasma physics [11, 12, 13].

2.1.2
Phase resolution

One could ask how precise an interferometer can be, meaning, what would
be the smallest detectable phase for a given setup? This leads us to the concept
of phase resolution.

We can get an idea about such limit by looking at the Heisenberg
uncertainty principle. From its energy-time form it is possible to obtain a
relation between the number operator and phase variation. We assume a wave
of N photons and frequency ω and by direct substitution using the relations
∆E = ~∆Nω and ∆t = ∆θ/ω We can get the the number-phase form of the
relation:

∆E∆t ≥ ~
2 =⇒ ∆N∆θ ≥ 1

2 . (2-12)
Observe that the optimal phase resolution ∆θ occurs when the above inequality
is saturated. Note again that the same relation implies ∆θ ≥ 1

2∆N , meaning
it is possible to improve our resolving power even further by increasing the
uncertainty in N .

An interesting fact is that we can express ∆N as a function of the mean
number of particles 〈N〉, which is the expected value of the number operator,
thus obtaining a bound on the phase resolution in terms of how many particles
are used in the measurement. There is a minimum amount of bosons necessary
to achieve a specific phase resolution ∆θ.

One noteworthy example is the Laser Interferometer Gravitational-Wave
Observatory (LIGO) as it is one of the only experiments limited by quantum
mechanics [11]. LIGO works with laser beams, which are represented by
a coherent state. This means two things, the phase-number uncertainty is
saturated and the photon number distribution is Poissonian. Hence, ∆N =√
〈N〉 [14]. So we get:

∆θ = 1
2∆N = 1

2
√
〈N〉

. (2-13)

As mentioned before, we could optimize this by increasing the uncertainty
in N . One way to do this is prepare what is called a NOON state. For N
particles it reads:
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|ψ〉 =
|N〉ai |0〉aj + eiNθ|0〉ai |N〉aj√

2
. (2-14)

This is called a NOON state because we can form the word "NOON" by taking
the 0s as Os. Note that the phase now depends on N as well. This is a sort of
generalization of the two-photon example discussed earlier with the Hong-Ou-
Mandel Effect. A general process to produce and check a NOON state is given
by figure 2.3.

Figure 2.3: General diagram of preparing a NOON state. We unitarily trans-
form N single particle states to an entangled state, apply a phase θ, and make
a measurement which collapses the wave-function to one of the detectors

Consider now an observable O. Having enough resolution to measure it
simply means that the signal is greater than the uncertainty. Say we measure
O for zero phase and for an arbitrarily small phase, ∆θ. To be able to resolve
the small phase we must have:

O(∆θ)−O(0) ≥ ∆O(θ). (2-15)

In the limit ∆θ → 0 this becomes:

∆θ ≥ ∆O∣∣∣∣∣δOδθ
∣∣∣∣∣
. (2-16)

Assume then that O is given by:

O = |N〉ai |0〉aj〈0|ai〈N |aj + |0〉ai |N〉aj〈N |ai〈0|aj . (2-17)

To simplify our calculations we may assign logical values to the following states
|N〉ai |0〉aj = |0〉 and |0〉ai |N〉aj = |1〉. This is equivalent to turning |ψ〉 in a
superposition of orthogonal states and O in the Pauli matrix σx:

|ψ〉 = |0〉+ eiNθ|1〉√
2

, (2-18a)

O = |0〉〈1|+ |1〉〈0| = σx. (2-18b)

One can note that |ψ〉 now represents a logical qubit. The form presented
above is a superposition of two logic values with equal probability amplitudes,
which differs from a classical bit that is assigned one of the values, either 0 or
1 [15].
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The expected values are then:

〈O〉 = 〈ψ| (|0〉〈1|+ |1〉〈0|) |ψ〉 = 〈ψ|σx|ψ〉 = cosNθ, (2-19a)

〈O2〉 = 〈ψ|σ2
x|ψ〉 = 1. (2-19b)

The uncertainty becomes:

∆O =
√
〈O2〉 − 〈O〉2 = sinNθ. (2-20)

Finally the phase variation reads:

∆θ = ∆O∣∣∣∣∣∂〈O〉∂θ

∣∣∣∣∣
= sinNθ
N sinNθ = 1

N
. (2-21)

For consistency we check that the uncertainty principle still holds.
Expected values for the number operator Ni are:

〈Ni〉 = 〈ψ|Ni|ψ〉 = N

2 , (2-22a)

〈N2
i 〉 = 〈ψ|N2

i |ψ〉 = N2

2 . (2-22b)

Then the uncertainty is:

∆Ni =
√
〈N2

i 〉 − 〈Ni〉2 = N

2 , (2-23)

and the Uncertainty principle still holds,

∆Ni∆θ = 1
2 . (2-24)

for Nj the results are the same.
As previously mentioned the resolving power increased with the particle

count in both the LIGO example and the NOON state, but it is still important
to make distinctions about the states discussed above. The coherent state and
the NOON state both saturate the uncertainty principle but the latter also
minimizes phase variations. It is one example of a squeezed state as one of the
uncertainties has been "squeezed" while the other "expanded". Unfortunately
preparing such a state in an interferometer is non-trivial for N > 2 [16].
However we will soon discuss how NOON state interferometry can be seen as a
particular example of a quantum algorithm. We will present a single unitary in
the form of a quantum circuit that produces and analyzes NOON-like states.
A phasor diagram that summarizes the idea of squeezed states can be found
on figure 2.4
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Figure 2.4: Phasor diagram for coherent, NOON and classical states.

2.1.3
Jordan-Schwinger map

Let us now consider the action of an interferometer on the number
operator N = Ni + Nj = a†iai + a†jaj. An MZI acts in the following way:

N in
i = a†iai → N out

i =
(

1− cos θ
2

)
a†iai +

(
1 + cos θ

2

)
a†jaj −

1
2 sin θ

(
a†iaj + a†jai

)
,

(2-25a)

N in
j = a†jaj → N out

j =
(

1− cos θ
2

)
a†jaj +

(
1 + cos θ

2

)
a†iai −

1
2 sin θ

(
a†jai + a†iaj

)
.

(2-25b)

Where N in is the number of particles before the MZI and N out after.
The number operator represents the number of particles in a system and is
a conserved quantity in linear optical schemes. In a composite system it can
be easily separated into one operator for each mode to check particle number
per mode. In our case this translates to having operators Ni and Nj. However,
there are two operators we are mostly interested in, N and Ni−Nj. The total
number operator N , transforms as:

N in = a†iai + a†jaj → N out = N out
i +N out

j = a†iai + a†jaj = N in, (2-26)
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This means N is conserved as expected. The interferometer doesn’t create or
annihilate particles.

Moreover the difference between Ni and Nj reads:

(Ni −Nj)out = cos θ(Ni −Nj)in − sin θ(a†iaj + a†jai)in. (2-27)

Despite N being conserved note that Ni−Nj need not follow suit. From
the equation above, it would only do so with θ = 2mπ for integer m.

From the previous equation we can take the two new operators Ni −Nj

and a†iaj + a†jai and notice a curious relation. We begin by calculating the
commutation relation:

[(a†iaj + a†jai), (Ni −Nj)] = 2i(a†iaj − a
†
jai). (2-28)

This result gives the idea that we can define the following operators:

Jx = 1
2(a†iaj + a†jai), (2-29a)

Jy = i

2(aia†j − a
†
iaj), (2-29b)

Jz = 1
2(Ni −Nj). (2-29c)

These are remarkably similar to angular momentum operators as their com-
mutators follow the same algebra and commute with J2 = N

2

(
N

2 + 1
)
, which

is actually a conserved quantity.
We then construct the map and shed a new light on what it is that

an interferometer does. From equations (2-27) and (2-26) we infer the MZI
transforms the J operators according to:

J ′x

J ′y

J ′z

 =


cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ



Jx

Jy

Jz

 . (2-30)

This means that an interferometer is nothing more than a rotation in an
angular momentum space and the interference pattern we observe is given
by the number operator difference Ni −Nj = 2Jz

We can also look back at our results for phase resolution. From equation
(2-16) we take O = J ′z and have that:

∆θ ≥ ∆J ′z∣∣∣∣∣∂J ′z∂θ
∣∣∣∣∣
. (2-31)

From equation (2-30), we can construct:

∆J ′2z (θ) = cos2 θ∆J2
z + sin2 θ∆J2

x − 2 cos θ sin θ Cov(Jx, Jz), (2-32)
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with
Cov(A,B) = 1

2〈AB +BA〉 − 〈A〉〈B〉. (2-33)
appearing in the second term due to error propagation. Cov(A,B) stands for
the covariance between operators A and B.

This result is interesting because it allows us to calculate the phase
resolution by simply knowing the input quantum states and the relative phase.
The phase resolution might be a function of θ, which implies an optimal
operation point in the vicinity of the phase that minimizes ∆θ.

Consider now an example. Let us calculate the phase variation for state

|N〉i|0〉j. First we need to calculate
∣∣∣∣∣∂〈J ′z〉∂θ

∣∣∣∣∣. This is given by the matrix (2-30):

〈J ′z〉 = − sin θ〈Jx〉+ cos θ〈Jz〉. (2-34)
The expected values are:

〈Jz〉 = 1
2(〈N |i〈0|j)(Ni −Nj)(|N〉i|0〉j) = N

2 , (2-35a)

〈Jx〉 = 1
2(〈N |i〈0|j)(a†iaj + a†jai)(|N〉i|0〉j) = 0. (2-35b)

Then the modulus of the derivative is:∣∣∣∣∣∂〈J ′z〉∂θ

∣∣∣∣∣ = + cos θ〈Jx〉+ sin θ〈Jz〉 = N

2 sin θ. (2-36)

Second we need to calculate ∆J ′2z . The remaining expected values are:

〈J2
z 〉 = 1

4(〈N |i〈0|j)(Ni −Nj)2(|N〉i|0〉j) = N2

4 , (2-37a)

〈J2
x〉 = 1

4(〈N |i〈0|j)(a†iaj + a†jai)2(|N〉i|0〉j) = N

4 , (2-37b)

〈JxJz + JzJx〉 = 0. (2-37c)

The uncertainties then are:

∆J2
z = 〈J2

z 〉 − 〈Jz〉2 = 0, (2-38a)

∆J2
x = 〈J2

x〉 − 〈Jx〉2 = N

4 . (2-38b)

The covariance:

Cov(Jx, Jz) = 1
2〈JxJz + JzJx〉 − 〈Jx〉〈Jz〉 = 0. (2-39)

Then the variance becomes:

∆J ′2z = N

4 sin2 θ. (2-40)

Finally, simply inputting the values in equation (2-31) gives:
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∆θ ≥ ∆J ′z∣∣∣∣∣∂J ′z∂θ
∣∣∣∣∣

=
√
N
2 sin θ
N
2 sin θ

= 1√
N
. (2-41)

This is an important example as it shows how easier it becomes to
calculate the uncertainties from the known input states. Previously one would
need to calculate the action of the whole interferometer and the output states
before proceeding with the calculation of the phase uncertainty, this way only
the input states are needed.

2.2
Fermions

We now switch the discussion to fermions. First, it is important to note
that they obey different statistics than bosons [8]:

{a†i , a
†
j} = {ai, aj} = 0, (2-42a)

{ai, a†j} = aia
†
j + a†jai = δij. (2-42b)

Going back to the NOON state, for bosons we know that if we prepare
a state like that we would have a phase resolution proportional to 1/N ,
equivalently the system would acquire relative phase eiNθ.

For fermions, any terms of the form |N〉|0〉 and |0〉|N〉, for N ≥ 1 are
excluded due to Pauli’s exclusion principle [8]. (In fact any term with more
than one fermion per mode would be excluded provided the particles have
the same spin.) Even more relevant, terms of the type |1〉|1〉 are now anti-
symmetric due to the new statistics. This means that particle exchanges now
give the system’s wave-function a global phase -1. We can go back to equations
(2-4a) and (2-4b) and note that while we would have the same result for one
fermionic particle in an MZI, equation (2-8) for two particles would become:

|1〉|1〉 → |1〉|1〉. (2-43)

There is no relative phase in the output of a fermionic MZI, but a global one.
Going through a second BS would simply yield the same result.

No relative phase means fermionic MZI yields no usable results because
there would be no interference pattern to observe. We need then to look at
new kinds of setups for measuring relative phase for fermion quantum states.

2.2.1
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Ramsey interferometer

A Ramsey Interferometer (RI) works by preparing atoms in the ground
state which will them suffer a π/2 pulse that takes them to an equal superpo-
sition of ground and excited states. After evolving freely for time t a second
π/2 pulse is injected. Ideally the final states should all be excited but if there
is a transition frequency mismatch ω 6= ω0 the probability of finding an atom
in an excited state is cos2(θ/2) for θ = (ω−ω0)t. This means that if a phase θ
was applied between the pulses we should detect an interference pattern. On
figure 2.5 we can see a diagram that describes this with no interference pattern
present due to no frequency mismatch.

This device was first described in a 1950 research paper by Norman Ram-
sey [17], where he used magnetic resonance to measure transition frequencies
of atoms between excited and ground states. We shall present the ideas from
a publication by Demkowicz-Dobrzański et al. [18].

Figure 2.5: Ramsey interferometer for a 2-level system. Each π/2 pulse creates
excited states |e〉 from the ground state |g〉. In the picture no interference
pattern is formed as all output states are excited.

Our focus is on what something like a RI can do for fermions. We can
think of two level atoms as 1/2 spin particles where the direction of spin along
the z component functions as the energy levels. In other words we are equating
spin down to a ground state and spin up to an excited state (| ↑〉 = |g〉 and
| ↓〉 = |e〉).

This way we can write the state evolution of an N atoms input through
the interferometer using total spin operators:

Ji = 1
2

N∑
k=0

σ
(k)
i , i = x, y, z. (2-44)

Where σ(k)
i are Pauli matrices acting on the k-th particle.
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Then the evolution is simply the π/2 pulses along a perpendicular axis
with a phase θ on the spin orientation axis in between them.

|ψ〉out = e−iJxπ/2eiJzθe−iJxπ/2|ψ〉in. (2-45)

This is analogous to the evolution through a MZI. In more detail, Jz can be
written as Jz = 2(Ng−Ne), where Ng and Ne are the ground and excited state
number operators. Then the difference between excited and ground states in
the RI case is equivalent to the difference between outputs i and j in the MZI
case.

To be more specific this resembles the example on subsection 2.1.3 of the
state |N〉i|0〉j going through a MZI. This means we can expect the same result
to be obtained here. The phase resolution according to equation (2-41) will
take the form:

∆θ ≥ 1√
N
. (2-46)

This all means that a RI is simply a special case of a MZI and a viable
alternative for interferometry with fermion-like statistics. In figure 2.6 we show
the MZI side-by-side with its equivalent operations on the Bloch sphere.

Figure 2.6: Diagram comparing Ramsey interferometry on the Bloch sphere
with the MZI. The two arms on the MZI are analogous to the excited and
ground states on the Ramsey intereferometer. The highlited area represents a
squeezed state, just as in the MZI one can work with squeezed states to reduce
the variance for the relevant quantities.
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2.2.2
Non-local interferometers

Here we present a setup discussed by Dasenbrook et al [19] which
generalizes the MZI. The interferometer in question produces and analyzes
entanglement from single electron quantum states. It is known as a Hanburry
Brown-Twiss Interferometer (HBTI).

Figure 2.7: Diagram for a Non-local interferometer. Four beams from four
different sources travel through two of the four beamsplitters before reaching
the detectors. They pick up a phase in two of the four arms.

As shown in figure 2.7, it has four sources A, B, C and D and four outputs
labeled A’, B’, C’ and D’. Each beam goes through two BSs before reaching
one of the four detectors. We also apply a phase θa and θb on two of the arms
of the interferometer.

The feasibility of this setup is due to advancements in coherent single
electron emitters and the possibility of using Edge channels created by the
quantum Hall Effect as wave-guides for the electrons. The BSs are substituted
for quantum point contacts as well and have 50:50 transmission rate [19].

The top BS implements the following transformation:

a†A →
1√
2

(a†A′ + a†B′), (2-47a)

a†B →
1√
2

(a†A′ − a
†
B′). (2-47b)
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The same procedure happens for the bottom one with the appropriate
indexes:

a†C →
1√
2

(a†C′ + a†D′), (2-48a)

a†D →
1√
2

(a†C′ − a
†
D′). (2-48b)

If we keep following the path from the top BS then one of the states
acquires phase eiθa , and on the second BS the following happens:

1√
2

(a†A′ + eiθaa†B′)→
1
2(a†A′ + a†D′ + eiθaa†B′ + eiθaa†C′), (2-49a)

1√
2

(a†A′ − eiθaa
†
B′)→

1
2(a†A′ + a†D′ − eiθaa

†
B′ − eiθaa

†
C′). (2-49b)

And on the bottom path:

1√
2

(a†C′ + eiθba†D′)→
1
2(a†C′ − a

†
B′ + eiθba†D′ − eiθba

†
A′), (2-50a)

1√
2

(a†C′ − eiθba
†
D′)→

1
2(a†C′ − a

†
B′ − eiθba

†
D′ + eiθba†A′). (2-50b)

In summary the interferometer does the following to single electron
states:

a†A|0〉 = |1, 0, 0, 0〉 → 1
2(|1, 0, 0, 0〉+ eiθa|0, 1, 0, 0〉+ eiθa |0, 0, 1, 0〉+ |0, 0, 0, 1〉),

(2-51a)

a†B|0〉 = |0, 1, 0, 0〉 → 1
2(|1, 0, 0, 0〉 − eiθa |0, 1, 0, 0〉 − eiθa |0, 0, 1, 0〉+ |0, 0, 0, 1〉),

(2-51b)

a†C |0〉 = |0, 0, 1, 0〉 → 1
2(−eiθb|1, 0, 0, 0〉 − |0, 1, 0, 0〉+ |0, 0, 1, 0〉+ eiθb|0, 0, 0, 1〉),

(2-51c)

a†D|0〉 = |0, 0, 0, 1〉 → 1
2(eiθb|1, 0, 0, 0〉 − |0, 1, 0, 0〉+ |0, 0, 1, 0〉 − eiθb|0, 0, 0, 1〉).

Note now that we have a relative phase between pairs of states that would
allow for the detection of an interference pattern, which is different from the
fermionic MZI that only gives us a global phase.
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More relevant is the state a†Aa
†
C |0〉. It takes the following form:

a†Aa
†
C |0〉 →

1
2(a†A′ + eiθaa†B′)(a

†
C′ + eiθba†D′)|0〉 (2-52)

→ 1
4[a†A′a

†
C′(eiθ − 1) + a†C′a

†
D′(eiθ + 1) +

+a†B′a
†
A′(eiθ + 1) + a†B′a

†
D′(eiθ − 1)−

−2eiθaa†C′a
†
B′ + 2eiθba†A′a

†
D′ ]|0〉.

Where θ = θa + θb. Note that the terms where two fermions reached the same
output were eliminated due to Pauli’s exclusion principle.

Now we can calculate the probabilities by simply doing the modulus
squared of each coefficient:

P (A′, C ′) = P (B′, D′) = 1
8(1− cos θ) (2-53a)

P (C ′, D′) = P (B′, A′) = 1
8(1 + cos θ) (2-53b)

P (C ′, B′) = P (A′, D′) = 1
4 (2-53c)

These are plotted in the figure 2.8:

Figure 2.8: Plot of probability as function of phase for a two particle input in
a Non-Local interferometer.

The calculation above can be extended for similar two electron states
(a†Ba

†
D|0〉, for instance), but we shall not repeat them here. Note as well that

one can calculate the probabilities of each state from the equation above.
Furthermore it can be shown that the state above violates the CHSH

inequality, which would prove that the state is in fact entangled. The correlator
will be a function of the phases θa and θb and for a suitable choice it will violate
the inequality. The calculation can be found at the source [19].
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The conclusion that we want to draw though is that an interferometer
of this kind is able produce constructive and destructive interference patterns
dependent on the phases θa and θb, while also proving the entaglement of these
states, despite the use of fermions. Fermionic statistics aren’t an impediment
to interferometry experiments.

2.3
The circuit approach

We can provide constructive examples of some of the concepts explored
in the previous sections with the aid of the circuit approach to quantum
computation. More specifically we can construct NOON state interferometers,
which we discussed in this chapter, by presenting BSs and interferometers as
quantum circuits and gates that represent a quantum computation.

A quantum circuit is a simple way to represent a quantum computation.
Consider the CNOT gate in figure 2.9.

Figure 2.9: The CNOT gate. It takes two qubits, a target and a control and
executes the above operation on the computational basis |00〉,|01〉, |10〉 and
|11〉. On the table the second qubit is the target and the first is the control.

A CNOT is an operation involving two qubits, one target and one control.
If the control has value |1〉 then the target flips values, otherwise if the control
is |0〉 then the target is unchanged. This gate can be given the following
representation as a matrix in the computational basis:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2-54)

Another interesting gate is the Hadamard gate. The Hadamard acts on
a single qubit and transforms the basis states |0〉 and |1〉 to the superpositions
|0〉+|1〉√

2 and |0〉−|1〉√
2 . It can also be represented by the following matrix and figure

2.10:
H = 1√

2

1 1
1 −1

 . (2-55)
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|0 +|1|0
2H

Figure 2.10: Representation of a Hadamard gate on state |0〉

Now consider the following product states for N qubits:

|0〉 = |00 . . . 0〉, (2-56a)

|1〉 = |11 . . . 1〉. (2-56b)

A "logical BS" (LBS) would take this logical basis to what is known as
GHZ states:

|0〉 → |GHZ+〉 = |0〉+ |1〉√
2

, (2-57a)

|1〉 → |GHZ−〉 = |0〉 − |1〉√
2

. (2-57b)

These states are interesting because they are "NOON-like" in a sense that
using them for interferometry allows us to achieve the Heisenberg limit.

We can accomplish this operation by using the quantum circuit for N
qubits in figure 2.11:

H

Figure 2.11: Quantum circuit implementing a logical beamsplitter.

It’s possible to show the unitary matrix that represents this beamsplitter
as well. For 2 qubits:

LBS = 1√
2


1 0 0 1
0 −1 1 0
0 1 1 0
1 0 0 −1

 . (2-58)
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An interferometer is then implemented as a circuit in figure 2.12.

H H

Figure 2.12: Quantum circuit implementing a NOON-like interferometer. The
phase shift gate simply adds a phase θ to the state |1〉. At the end we have
a detector for each qubit. In quantum circuit notation these are normally
replaced by measurement operators.

The phase gates θ adds a phase so an interference pattern can observed.
For one qubit it has the following form:

Θ =


1 0
0 eiθ

.

 (2-59)

Note that if we applied two BSs without the phase we would simply recover
the initial state

LBS × LBS = I, (2-60)
but, for phase θ we get:

(LBS)ΘN(LBS)|0〉 = 1 + eNiθ

2 |0〉+ 1− eNiθ
2 |1〉, (2-61a)

(LBS)ΘN(LBS)|1〉 = 1 + eNiθ

2 |1〉+ 1− eNiθ
2 |0〉. (2-61b)

Which gives the following probabilities for input |0〉:

P (|0〉) = 1 + cosNθ
2 , (2-62a)

P (|1〉) = 1− cosNθ
2 . (2-62b)

Note that the probabilities are reversed for input |1〉 and that these results
are similar to what you would expect for a NOON state in an interferometer.
To see this remember the mapping we did in section 2.1.2: |N〉ai|0〉aj = |0〉
and |0〉ai |N〉aj = |1〉. This means we can reach the Heisenberg limit with this
circuit.

Then it is possible to represent an interferometer as a program in a
quantum computer and interferometry can be seen as a branch of quantum
computation. This is specially interesting because it allows us to do scalable
NOON-like interferometry, we can create NOON states for any N by increasing
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the size of the circuit by adding qubits and operations. But not only that, we
can simulate our interferometer in classical computers and also run it on real
quantum devices, which is precisely what we do next.

2.3.1
Implementing the interferometer

We can leverage IBM’s Quantum Computers and its SDK (Software De-
velopment Kit) known as Qiskit (Quantum Information Software Kit) [20]
to implement our NOON-like interferometer. Qiskit allows us to code in the
Python programming language and create a quantum circuit utilizing Open-
QASM (Open Quantum Assembly Language) specs [21], it also provides access
to different backends through an API (Application Programming Interface) to
execute our computations. The backends are where our circuit is compiled
and executed and what provides us the results of the computation. From the
available ones we shall use only two.

The first is known as the QASM (Quantum Assembly Language) simula-
tor which mimics the execution of the circuit through a real quantum computer
and its measurements. It goes as far as being able to incorporate simulated
custom and pre-configured noise models into the operation, but we won’t be
using this feature as we plan to run the same circuits on a real computer that
is already susceptible to real noise.

The second one is a real device known as "IBM Q 5 Yorktown" on IBM’s
servers that we access through a freely available API. It is interesting to be
able to run this circuit in a real computer because we can have a better
understanding if such computation is feasible or not given today’s quantum
computational limits, be it in terms of the number of qubits or the reliability
of logical operations. Concerning this specific device we are limited to only five
qubit operations and its logical error rates are specified on IBM’s website [22].

There are a number of factors to consider when choosing one of IBM’s
computers to run a circuit. Chief among them are the error rates of the logical
operations; usually we want them to be as small as possible for the most critical
operations, and also the topology of the computer itself; not all qubits share
direct logical connections with each other for example. For the circuit we are
discussing the IBM Q 5 Yorktown was the ideal choice because of its unique
topology, it allows us to map a virtual qubit to a physical one that has a direct
connection to all the others used in the computation. This is perfect for our
NOON-like interferometer as all the control operations are concentrated on
the first qubit. On figure 2.13 we can see the physical chip and graph of its
topology.
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(a) (b)

Figure 2.13: Both pictures taken from the IBM website [22] (a) Layout of the
chip (b) Topology of the chip. Each circle represents a qubit. A line connecting
them tells that we can apply two qubit operations directly on both of them.

This takes us to another problem when trying to execute our circuit on
a real device. Real quantum computers can normally execute only a basic set
of operations which we call a base, we say that a computer is then universal
if from that base we can construct any unitary operation arbitrarily close to
the desired logical operation [23]. IBM’s computers utilize a specific base that
consists of the following gates: G = {U1, U2, U3, CNOT, I}, where U1, U2 and
U3 take the form:

U3(θ, φ, λ) =
 cos θ

2 −eiλ sin θ
2

eiφ sin θ
2 ei(φ+λ)cos θ2

 , (2-63a)

U3(π2 , φ, λ) = U2(φ, λ) = 1√
2

 1 −eiλ

eiφ ei(φ+λ)

 , (2-63b)

U3(0, 0, λ) = U1(λ) =
1 0

0 eiλ

 . (2-63c)

One can easily see that U1 is simply the phase gate, U2 is a generic gate
that creates superpositions (The Hadamard is a specific implementation of U2

for example) and that U3 is just a general unitary. The problem that we face
then is writing our circuit in a way that is optimal for IBM computers to
understand. For that we have to not only consider the topology problem we
mentioned earlier but the basis in which the computer operates as we want to
use the least amount of gates possible so as to reduce the failure rate of the
whole circuit, meaning, we would get less incorrect results after the execution.

Fortunately though, Qiskit already has a tool that does this very thing.
Called Transpiler, it is responsible for doing the topology mapping of our
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circuit to the chip and it can also write the circuit in the required basis while
optimizing it into a form that uses the least amount of gates. It even allows
for user input so we can suggest initial topology mappings. An example for a
mapping of our circuit for five qubits can be seen on figure 2.14.

Figure 2.14: Mapping of the qubits on the chip topology. Our virtual qubit 0
was mapped to the chip’s physical qubit 2, while the rest were distributed
among the other physical qubits. Each circle represents a qubit. A line
connecting them, tells that we can directly apply two-qubit operations on
them.

With the Transpiler most of our problems are solved, we have a way to
map our logical qubits onto the chips physical ones and we can already build
our circuit on IBM’s basis because our circuit only uses gates in said basis.
As mentioned previoulsy, the chip topology doesn’t allow us to execute direct
controlled operations between every qubit but, fortunatelly, one of the qubits
has direct access to all the others. Taking this into consideration we take a
look at our circuit realize that the controlled operations are all condensed on
the first qubit, that’s the reason we map it to the central qubit on the chip
and why this topology is beneficial to us.

Before we proceed further it is useful to introduce another concept known
as depth for comparing circuits. The size of a circuit is simply the amount of
gates a circuit has, but depth has a more subtle meaning. It is the longest path
from input to output on a circuit, we can think of each gate taking one unit
of time to be executed for the purpose of this calculation. Consider figure 2.15
as an example, in figure (a) we can see that qubit q1613 has a depth of twelve,
There are ten operations in its line but the first controlled operation on it has
to wait for previous two ones to complete, this adds up to twelve. On circuit
(b) q1593 has depth twenty but only six operation in its line, this is due to the
fact that it also has to wait for previous operations on q1590 to complete. So,
circuit (a) has a lower depth of twelve while circuit (b) has a higher depth of
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twenty. On the other hand, both circuits have the same size as they require
twenty eight operations.

(a)

(b)

Figure 2.15: Both pictures plotted on Qiskit. (a) Another circuit based on
our NOON-like interferometer but now the CNOTs are cascaded. (b) Circuit
that corresponds to the NOON-like interferometer. In both figures θ = π/10
and N = 5. N classical bits are also created alongside the qubits for the
measurements to be recorded on.

Now we can then start executing the circuits for different values of θ and
N . We begin by building a two qubit implementation of our Interferometer
and realizing measurements on the two outputs. We start with only a small
number of qubits because this allows us to create a smaller circuit that is less
susceptible to errors and decoherence. It will later be increased to five qubits as
that is the current limit of the computer we chose to work on. It is worthwhile
to mention that with two qubits we have a depth of six, while for five the depth
increases to twenty.

We will run the circuit multiple times and calculate the probabilities of
obtaining the state |00〉 as a function of the phase θ in the interferometer
utilizing both the QASM simulator and IBM Q 5 Yorktown. The theoretical
prediction would be:

P (00) = cos 2θ + 1
2 . (2-64)
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Figure 2.16: Simulated, experimental and theoretical results of the circuit for
two qubits. Probabilities are calculated for one period in steps of π/8 for θ.
Simulated results are given by the QASM Simulator on a classical computer
and experimental results are given by the IBM Q 5 Yorktown.

As we can see the experimental results are appreciably close to the
theoretical predictions and simulations. This gives us the hope that we can
execute our circuit without encountering any major issues due to the error
rates of the operations. The next step is to increase the number of qubits.

Let us now do N = 3. The theoretical prediction changes to:

P (000) = cos 3θ + 1
2 . (2-65)
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Figure 2.17: Simulated, experimental and theoretical results of the circuit for
three qubits. Probabilities are calculated for one period in steps of π/12 for θ.
Simulated results are given by the QASM Simulator on a classical computer
and experimental results are given by the IBM Q 5 Yorktown.
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It is clear that our experimental results get considerably worse, but are
still somewhat similar to the expected results. The fitted function is of the
form:

P ′(000) = 0.85cos 3(θ + 0.05π) + 1
2 , (2-66)

which means we had a decrease in amplitude and a small phase shift.
The depth for N = 3 is twelve, this gives us an idea that depth and

precision might be correlated in this experiment. Most likely as depth (and
with it, the time necessary to compute) increases our results get noisy due to
decoherence effects on the chip. With that in mind we increase the number of
qubits to the limit of the device.

Now for N = 5. The theoretical prediction changes to:

P (00000) = cos 5θ + 1
2 . (2-67)
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Figure 2.18: Simulated, experimental and theoretical results of the circuit for
five qubits. Probabilities are calculated for one period in steps of π/20 for θ.
Simulated results are given by the QASM Simulator on a classical computer
and experimental results are given by the IBM Q 5 Yorktown.

The interference pattern visibility decreases appreciably. The fitted func-
tion is now of the form:

P ′(00000) = 0.65cos 5(θ + 0.18π) + 1
2 , (2-68)

which means we had an even greater decrease in amplitude and a larger phase
shift.

As previously mentioned this is most likely due to the fact that errors
accumulate as the depth increases. The noise becomes so high that the outputs
are almost completely flipped due to the amount of bit flip and phase flip
errors in the operations. At this point one might ask themselves where in
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the computation the errors might be occurring. There are two possibilities,
either the logical operations of the circuit are flawed or the measurements
are inaccurate. There are no guarantees that the computer isn’t executing
the computation perfectly and the measurements are the ones introducing the
noise.

Fortunately, there is a procedure to mitigate measurement errors de-
scribed in the Qiskit textbook that we can utilize [24]. We won’t go into the
details here about the method, suffice it to say that we are simply creating a
change of basis matrix that will take our results from the noisy measurement
to the ideal measurement.

To do so we first have to calibrate our matrix by executing "empty"
circuits. We input, one at a time, the logical basis states (For two qubits these
would be |00〉, |01〉, |10〉 and |11〉) and execute measurements without doing
any logical operation, which means the states are unchanged by the circuit
and the results should be equal to the inputted states. This won’t be true due
to measurement errors, but we can execute those circuits multiple times to
calculate how the basis vectors change on average to a noisy result.

With that in hand we have a change of basis matrix that takes us from
the ideal results to the noisy ones. As the operation we want is the opposite
we can simply invert that matrix to get a basis change from the noisy results
to the ideal results, with measurement errors mitigated.

Let us then execute this method to mitigate measurement errors in our
circuits. We shall only do so for θ = π/12 and three qubits. Below is the
histogram of probability per state:

Figure 2.19: Simulated, measured and mitigated results of the circuit for three
qubits and θ = π/12. Mitigating the measurement errors gives us no gain.
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As we can see mitigating the measurement errors gives no gain in
precision which in turn implies that most of the errors occur during the logical
operations.

What we can take from these results is that while theoretically feasible it
is still not possible for current devices to execute our circuit with satisfactory
precision for a high number of qubits. One could think to run error correcting
codes to fix the bit and phase flip errors for our circuit, but the unfortunate
reality is that we would not only need error rates below the current threshold
but also increase the number of available qubits in the computer while reserving
some just to execute error correction.

As an example, if we consider the Shor code for error correction we
would need eight ancillary qubits per useful data qubit, which would make it
impossible to execute in the available IBM computers. Let us say then that
we want to fix just the bit flip errors, still we would need to do so with two
ancillary qubits per data qubit [25]. The amount of necessary qubits to compute
the circuit would triplicate just to fix bit flips, so currently we simply do not
have the necessary overhead to correct the errors and the available devices are
not fault tolerant enough to ignore the need for corrections.

On the upside, this approach to interferometry still gives us the flexibility
of being easily adaptable to any universal quantum computer granted we can
write our circuit in the required basis. This means that if a future device
or computational model that is more resilient to errors is discovered we can
possibly implement our circuit. Next we will study how we can implement this
interferometer for a model based on quasi-particles with non-abelian exchange
statistics, anyons, which have interesting applications in quantum information
due to its stabilty and resilience against decoherence [5].

The reader can find excerpts of the code used in this section in Appendix
A.
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3
Anyons and quantum computers

In the previous chapter we discussed interferometry in the context of
particles in three dimensions, bosons and fermions. Those particles have the
property of being indistinguishable, every photon is the exact same. This leads
to an interesting effect, exchange symmetry.

As we have mentioned before, if two bosons are exchanged (positions
swapped) the physical system is the exact same as before as it acquires a global
phase +1. For fermions something similar is true, under exchanges the new
wavefunction for the system acquires a -1 global phase. These are consequences
of each particle being described by Bose and Fermi-Dirac statistics respectively.

We will be interested in indistinguishable particles in two dimensions.
These can have generalized statistics, which are neither bosonic, nor fermionic.
We call such particles anyons and exchanges between them produce non-
trivial effects on the system’s wave-function. This opens up new theoretical
possibilities, specifically in the field of fault tolerant quantum computation.
We must also mention that anyons are experimentally feasible with the most
recent notable realization involving the Quantum Hall Effect [15].

As a starting point we will discuss the Aharonov-Bohm effect as a physical
model of anyon statistics.

3.0.1
The Aharonov-Bohm Effect

The effect was first proposed by Yakir Aharonov and David Bohm in 1959
[26]. It relates to a phase shift acquired by a particle when taken adiabaticallly
around a solenoid. To better understand the effects of restricting ourselves to
two dimensions we shall do a 2D analysis of the effect as presented by Preskill
[15].

In the two dimensional case the solenoid is replaced by a point-like "flux
tube" of magnetic flux Φ. Suppose then that an electric charge q completes a
counterclockwise rotation around the "flux tube", Quantum mechanics predicts
that the wave-function acquires a phase eiqΦ. This is the Aharonov-Bohm effect
and the phase is known as a "topological phase", since it is invariant under
continuous deformations of the path taken by the electric charge.
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Figure 3.1: Diagram illustrating the 2D Aharonov-Bohm Effect in the unbound
and bound cases. The particle follows the red path in the direction of the arrow
around a solenoid represented by the cylinder. In both cases the topological
phase is the same. It is independent of the path taken.

Now suppose that the charge and flux are bound together, meaning the
electric charge q is now stuck to an impenetrable wall that contains flux Φ.
This can be seen o figure 3.1. Rotating the charge around that wall by an angle
of 2π is equivalent to the unitary transformation:

U(2π) = e−i2πJ = eiqΦ, (3-1)

where J is the total angular momentum. The eigenvalues then become:

J = m− qΦ
2π , (3-2)

for integer m. We can then define θ = qΦ mod 2π, which means that
eigenvalues of J are then shifted from integer values by −θ/2π.

The above result is as expected. To understand why, consider an example:
Imagine a particle orbiting around a solenoid in the x − y plane. Its angular
momentum around the rotation axis is quantized according to lz = m. If a
current is slowly turned on then an electric field on the plane takes the form
−→
E (−→r ) = − ẑ×r̂Φ̇

2π(x2+y2) according to Faraday’s law. Then the change in angular
momentum has to be of the form l̇z = [−→r × (q−→E )]z = − qΦ̇

2π , which means
that changes in the angular momentum depend only on the flux Φ. So again,
lz = m− qΦ

2π which is the same quantized form obtained previously [4].
Consider now a composite system. Imagine two charged particles tightly

bound to a solenoid, where we take the forces between the charges to be small
perturbations, meaning q → 0 for fixed qφ. In a manner analogous to equation
(3-1) rotating both charges by an angle of 2π is equivalent to:

U(2π) = e−i4πJ = e2iqΦ. (3-3)

Now the interesting takeaway is that in three dimensions θ is restricted to
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0 and π. This comes from the property of the rotation group SO(3), any closed
path beginning at identity and ending at a 4π rotation can be contracted to
a trivial path. So 4π rotations are the identity operation, which means that
2π rotations have +1 and -1 eigenvalues (bosons and fermions respectively).
This however is not true for rotations in two dimensions SO(2) [15] and,
consequently, θ can assume any value.

From what we have seen on the previous chapter one can start to make a
clear connection between spin number and the statistics of a particle. Bosons,
which have integer spin, obey bosonic statistics and fermions, which have
half-integer spin, obey fermionic statistics. Interestingly enough, we have just
discussed particles in two dimensions that can have fractional spin dependent
on the phase θ. What does that mean for their statistics and exchange
symmetry?

Assume that we exchange two particle-flux composites around each other.
This is equivalent to each particle being rotated by π around one of the fluxes
Φ. Each one of the particles will then acquire a phase equivalent to half of
a complete revolution. Adding together both phases we find that the wave-
function that describes the system changes by ei

θ
2 +i θ2 = eiθ = e−i2πJ . This

means that, in this context, exchanging two objects is the same as rotating
one by 2π. This implies that particles with fractional statitics have fractional
spin.

3.1
Abelian Anyons

Particles that obey generalized statistics were first called anyons by Frank
Wilczek in 1982 [27] precisely because exchanging them can give "any" phase.
A simple way to summarize this and the idea discussed in the previous section
is the following. Assume |ψ1ψ2ψ3...ψi〉 is the wave function for a system of
i anyons confined to two dimensions. A two-anyon system could then be
described by |ψ1ψ2〉. Suppose then that we exchange both particles and now
the system can be described by:

|ψ2ψ1〉 = eiθ|ψ1ψ2〉, (3-4)

where θ is the anyonic phase or topological phase from before. Note that we
can recover bosonic and fermionic results by setting θ = 2nπ and θ = (2n+1)π
respectively for integer n.

As mentioned before we can closely link this to spin by doing θ = 2πs
where s stands for the spin number of the particle:

eiθ|ψ1ψ2〉 = ei2πs|ψ1ψ2〉 = (−1)2s|ψ1ψ2〉, (3-5)

DBD
PUC-Rio - Certificação Digital Nº 1812665/CA



Chapter 3. Anyons and quantum computers 48

where s has integer values for bosons and semi-integer for fermions, again
recovering the known results for those statistics.

It is important to note as well that: (1) Charges in this context are labels
assigned to each particle (2) Anyons are charged particles and its charges are
locally conserved and (3) There are no long range interactions between anyons
mediated by other particles.

Another point of interest is that one can take the permutation operators
(+1 and -1) of bosons and fermions and see that they form the group known
as the permutation group Sn, where n is the number of indistinguishable
particles. On the other hand, anyonic permutation operator (eiθ) will form
a more interesting group known as the Braid group Bn [28]. Going forward we
will define it and see how it actually forms a mathematical group.

3.1.1
Braid Group

Before proceeding with definition it is worth to consider our motivations.
We want to be able to calculate transition probabilities between quantum
states by summing over particle histories, much like a Feynman path integral.
So to connect this idea to a Braid group we must think of each braid as a
way to represent every particle and their history and our path integral simply
becomes an integral over every braid.

First let us consider a system of n indistinguishable particles confined
to a 2D surface. Imagine that such surface also has n vacancies or holes that
the particles can occupy. Particles cannot be outside of their holes and each
hole only supports one particle, which means that every hole is occupied and
particles can only be exchanged. This is equivalent to saying that these particles
have a "hard-core interaction" and can’t occupy the same space.

Normally, to calculate the probability amplitudes for this system we
would consider the evolution of every particle through time over all the classical
paths to achieve the final state and sum those histories while weighted by the
phase eiS, where S stands for the classical action.

To add to the previous statement, we also associate a particle and its
history to a world line that will tell us its complete path from beginning to
end. Each particle is then given a strand and permutations of particles will be
defined as braids of those strands. This way we can define each braid as an
element of our group. But to define a group we need to go further and also
choose a group operation.
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Figure 3.2: Braiding group element. Each colored dot represents a particle.
Counterclockwise exchange of the blue and red particles.

First it is important to note what distinguishes elements in the group.
Say we modify the exchange in figure 3.2 to a clockwise exchange as in figure
3.3 (c), we no longer have the same element, on the other hand we can push
and pull strands to deform the braid and this wouldn’t modify the braiding as
in figure 3.3 (b). Now let us define an operation as simply the composition of
braids. One can achieve any braid by simply concatenating various different
elements as in figure 3.4.

Figure 3.3: A braiding can be deformed and still be the same element. While
braiding (a) and (b) are the same, braiding (c) is another element altogether
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Figure 3.4: Concatenating braids. Braiding (d) is done by concatenating (c),
(b) and (a) in that order

To make absolutely sure that this is, in fact, a group we must guarantee
that it also satisfies what is known as the group axioms of which there are
four:

– Closure: The result of the operation between two set elements must
remain in the set. This is easily seen above when we defined the
concatenation operation.

– Associativity: "Groupings" of the elements of the set shouldn’t affect
the outcome of an operation. This can be seen from figure 3.4. Note that
[(c)+(b)]+(a) = (c)+[(b)+(a)]; where + represents our group operation,
not addition.

– Identity element: There is an element e in the set such that e+a = a+e
for every element a in the set. This is equivalent to a braiding with
completely vertical strands where no exchange occurs.

– Inverse element: For each element a in the set there exists an element
b in the set such that a + b = b + a = e. This is the braid that
undoes another. In figure 3.3 note that (c) undoes (a) and vice-versa:
(a) + (c) = (c) + (a) = e.

This forms an infinite group known as the Braid group Bn where n is
the number of strands or particles. It is important to understand that with
the properties above we can create this group from a set of generators that
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have relations among them. First, consider that each strand/particle is ordered
in a line with labeled positions, we then define operators σn that represents
the counterclockwise exchange of the n-th particle with the (n+1)-th particle.
This way it is possible to create any braid by simply concatenating σ operators,
which means we are simply doing successive exchanges.

The exchanges defined as the σ operators are the group generators. They
can generate any element in the group if properly arranged. More interestingly
these generators are constrained by two important relations. The first one is
simply:

σiσj = σjσi, |i− j| ≥ 2. (3-6)
This says that exchanges between non-neighbouring strands commute. Con-
sider the example: σ1 exchanges strands 1 and 2 while σ3 exchanges strands
3 and 4. The order of these operations is irrelevant as one exchange does not
affect the other, but the same could not be said about σ1 and σ2.

The second, more important one, is:

σiσi+1σi = σi+1σiσi+1. (3-7)

This is known as the Yang-Baxter relation and is shown on figure 3.5. It simply
describes an exchange of particles adjacent to an in-between particle that leaves
the middle one unchanged. For example: The relation σ1σ2σ1 = σ2σ1σ2 is true
as both of those operations are exchanging particles 1 and 3 while leaving 2 in
the original position.
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Figure 3.5: Yang-Baxter relation. (a) and (b) are are the group generators σ1
and σ2 respectively. (c) is a graphical representation of the relation σ1σ2σ1 =
σ2σ1σ2

What we have discussed above is the one dimensional braid group which
we can see as a representation of the Hilbert space created by a system of
anyons. We can go even further and state that, for abelian anyons, we can
associate the generator of the braid group Bn with the anyonic phase like so:
σj = eiθj .

We can also see that, due to the Yang-Baxter relations, eiθj = eiθj+1 = eiθ

which should be expected. As the particles are indistinguishable it would make
no sense for the exchange phase to be able to distinguish them. Observe as well
that for θ = 0 and θ = π we recover bosons and fermions but also something
deeper. Bosons and fermions are in fact the representation of another one-
dimensional group, but with generators +1 and -1 respectively, this is the
permutation group Sn we mentioned before.

3.1.2
Particle Fusion

We mentioned before that anyons locally conserve their charge which
motivates us to question what happens when we join anyons together to obtain
new charges, we will call this operation fusion. We are specifically interested
in how the statistics of the new system change. For abelian anyons the answer
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becomes quite simple as the fused charge can be uniquely generated. We will
show later how that might not always be the case.

Consider one system of two indistinguishable anyons, as previously seen,
exchanging them with one another causes the system to pick up a phase eiθ.
Now let us create a duplicate of the system and fuse the pairs of anyons on the
original and the copy. We now have a new system of two composite anyons that
we can then exchange but now the phase acquired upon exchange becomes ei4θ

as we have four exchanges of individual anyons with each contributing eiθ.
One can then generalize this relation and say that for a fusion of N

indistinguishable abelian anyons with statistic operators eiθ the new composite
system will create a phase of eiN2θ.

3.2
Non-Abelian Anyons

To talk about non-abelian anyons we first need to go back to our analogy
with the Ahanorov-Bohm effect. This time we will consider a non-abelian
superconductor of two dimensions, in this conductor we will find fluxons
(particles that carry a magnetic flux) and chargeons (particles that carry
charge). This is a toy-model to better understand what are the consequences
of working with Non-abelian effects.

Let us now consider a particular chargeon C. We say this state/chargeon
has dimension |C| and define a basis for it:

|C, i〉, i = 1, 2, ...|C|. (3-8)

Now we move this chargeon through an enclosed path around a fluxon F . The
resulting state is no longer the same, it changes accordingly:

|C, j〉 →
|C|∑
i=1
|C, i〉UC

ij (F ), (3-9)

where UT
ij (F ) is an unitary matrix that rotates the original state. Note that this

is remarkably different from the previous case of abelian anyons. Previously
our state would not change with the exception of the added phase, but now
we have a completely new state.

For the definition of abelian anyons we focused on two things: (1) How
we can exchange two particles and its effect on the system and (2) How
we can fuse two particles and its effects on the charge and statistics of the
composite system. We are going to call these two braiding rules and fusion
rules respectively and will try to encounter similar relations for non-abelian
anyons.
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Before proceeding, we must be more precise with our definition of charge
for anyons. Charge here is nothing more than a label, one particle will have
a specific charge denoted by letters {a,b,c,...}, the set of possible charges will
always be finite for us, charges are locally conserved, so it can only be changed
by short-range interactions with other particles. We also have a special label,
the identity label 1, which means absence of charge and, by definition, particle.
Charge conjugation is an allowed operation and the conjugate charge of a is
denoted by ā. Like we did in the previous section we can consider our particles
ordered in a horizontal line each with their respective label/charge.

3.2.1
Fusion Rules

Let us now focus on the fusion rules. In the case of abelian anyons we
mentioned that there is only one way to fuse particles. This is not the case for
non-abelian anyons. A more general way to represent the fusion rules between
two charged particles a and b is:

a× b =
∑
c

N c
abc. (3-10)

For N c
ab being a non negative integer that represent how many ways a and b

can fuse into c and the sum being over the set of all possible charges c. The ×
sign does not represent a tensor product and the sum on the right side is not a
direct sum, this is an abstract relation that maps (a.b; c) into N c

ab. For abelian
anyons we have that N c

ab = 0 for all labels c except for one in which N c
ab = 1.

This means that there is only one possible way to fuse those particles. In other
words applying this equation to fusing n abelian anyons with k abelian anyons
of statistics θ = π

m
for integer m:

a× b = θ × θ = n2π

m
× k2π

m
= (n+ k)2π

m
. (3-11)

As expected Nn
nk = Nk

nk = 0 and Nn+k
nk = 1. This is completely analogous to

the way we presented fusions in the previous section. Two particles of statistics
θ will fuse into a composite of statistic 4θ as is the case for n = k = 1.

The same is not true for non-abelian anyons (∑cN
c
ab > 1) and this is the

fundamental way in which they differ. This notion might seem odd at first.
How can two charges fuse in different ways? In reality this isn’t much different
from spin addition, for example two spin 1/2 particles can fuse into either a
spin-0 or spin-1 particle.

To define an anyon model we have to set what our possible charges are
and then define the fusion rules between them, the fusion rules we settle on

DBD
PUC-Rio - Certificação Digital Nº 1812665/CA



Chapter 3. Anyons and quantum computers 55

are what decide if our model is abelian or not. In order to clarify let us work
with some examples.

For our first example consider a model with three different anyons with
labels 0, 1

2 and 1 where 0 stands for the identity charge. The fusion rules are
as follows:

1
2 ×

1
2 = 0N0

1
2

1
2

+ 1
2N

1
2
1
2

1
2

+ 1N1
1
2

1
2

= 0 · 1 + 1
2 · 0 + 1 · 1 = 0 + 1, (3-12a)

1
2 × 1 = 0N0

1
2 1 + 1

2N
1
2
1
2 1 + 1N1

1
2 1 = 0 · 0 + 1

2 · 1 + 1 · 0 = 1
2 , (3-12b)

1× 1 = 0N0
11 + 1

2N
1
2

11 + 1N1
11 = 0 · 1 + 1

2 · 0 + 1 · 0 = 0. (3-12c)

Note that this is remarkably similar to spin addition because these are also
similar to decomposition rules for tensor products of SU(2) with the only
difference being that 1 is the maximum "spin" (which is shown by 1

2 × 1 = 1
2

and 1 × 1 = 0). We have chosen not to write trivial fusion rules that involve
the identity charge.

For another example consider a model with two possible charges, 1 and
2, where 1 is the identity charge and let us write the fusion rules:

1× 1 = 1N1
11 + 2N2

11 = 1 · 1 + 2 · 0 = 1, (3-13a)

1× 2 = 1N1
12 + 2N2

12 = 1 · 0 + 2 · 1 = 2, (3-13b)

2× 2 = 1N1
22 + 2N2

22 = 1 · 1 + 2 · 1 = 1 + 2. (3-13c)

What this essentially means is that no particles fuse into no particle, one
particle with no particle fuse into one particle, and one particle with one
particle fuse into one particle or no particle. The only non-trivial rules is the
last one as we have N1

22 = N2
22 = 1. We shall go back to these relations later

as this model is of special interest.
What is more relevant is that one can take N c

ab and construct an
orthonormal basis for a Hilbert space V c

ab called fusion space. We represent
these states in such a way:

|ab; c, µ〉, µ = 1, 2, ...N c
ab, (3-14)

where µ represents one of the allowed forms for the fusion. Note that the
dimension of fusion space V c

ab is given by how many way a and b can fuse into c
(N c

ab). It is also worth noting that there is a dual vector space V ab
c that describe

particle splitting.
As expected the basis elements will be orthogonal and the base is
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complete:

〈ab; c′, µ′|ab; c, µ〉 = δc
′

c δ
µ′

µ , (3-15a)∑
c,µ

|ab; c, µ〉〈ab; c, µ| = Iab. (3-15b)

Where Iab is the projector onto space ⊕
c V

c
ab. Note that equation (3-15a)

represents particle c′ splitting and refusing into c, which is only possible if
c′ = c and µ = µ′. Also equation (3-15b) represents particles a and b fusing
and re-splitting in every possible way.

Note that we can raise and lower indices by conjugating the labels, i.e
V c
ab
∼= V 1

abc̄ to get isomorphic spaces, this is equivalent to fusing particles a, b
and c̄ to get the identity charge.

This leads to interesting relations:

V a
a1
∼= V 1

aā, (3-16a)

V a
a1
∼= V aā

1 . (3-16b)

Equation (3-16a) gives us the only way we can fuse a particle with another to
obtain 1 and equation (3-16b) tells us that when created in a vacuum particles
have conjugate charges.

The most important result we can take from all this is the ability to
ascertain if we are talking about abelian or non abelian anyons simply by
looking at the fusion rules. Consider the folowing relation:

dim

(⊕
c

V c
ab

)
=
∑
c

N c
ab ≥ 2. (3-17)

if the above holds for at least one ab pair, then we are talking about non-abelian
anyons.

Before proceeding further we must note another property of fusions,
associativity:

(a× b)× c = a× (b× c). (3-18)
Physically this makes perfect sense. The total charge of a complete system is
an intrinsic characteristic of itself so the order of fusions shouldn’t affect the
final charge.

To better understand this we can begin by decomposing the total fusion
space in terms of fusions spaces of particle pairs:

V d
abc
∼=
⊕
e

V e
ab ⊗ V d

ec
∼=
⊕
e′
V d
ae′ ⊗ V e′

bc . (3-19)

DBD
PUC-Rio - Certificação Digital Nº 1812665/CA



Chapter 3. Anyons and quantum computers 57

This is the same thing as describing V d
abc in two different bases:

|(ab)c→ d; e, µν〉 ≡ |ab; e, µ〉 ⊗ |ec; d, ν〉, (3-20a)

|a(bc)→ d; e′, µ′ν ′〉 ≡ |ae′; d, ν ′〉 ⊗ |bc; e′, µ′〉. (3-20b)

We can then relate the two bases with a unitary transformation F :

F : |(ab)c→ d; e, µν〉 =
∑

e′,µ′,ν′
|a(bc)→ d; e′, µ′ν ′〉

(
F d
abc

)e′µ′ν′
eµν

. (3-21)

Where
(
F d
abc

)e′µ′ν′
eµν

is a unitary matrix which we simply call the F -matrix.
Normally the F -matrix can be found by utilizing what is called as "The
pentagon equation", we shall not delve on specifics about its calculation but it
relies on the fact that one can do different series of basis changes to a system
of four anyons and still obtain the same result [15].

3.2.2
Braiding Rules

As we have seen, exchanging particles in an anyon system has a non-
trivial effect on the system’s wavefunction. With abelian anyons we saw that
exchanging two particles created a phase eiθ in the original state according
to the fractional statistics. For the non-abelian case we ended up with a new
rotated state. This situation begs us to create more general rules that can
describe both cases. These are called braiding rules.

When we exchange the positions of two particles a and b their total charge
c remains unchanged, but the fusion space is no longer the same: The space V c

ab

now changes to V c
ba. We can then create a map between the two fusion spaces:

R : |ba; c, µ〉 →
∑
µ′
|ab; c, µ′〉(Rc

ab)µ
′

µ . (3-22)

Where (Rc
ab)µ

′
µ is a unitary matrix that we call the R-matrix. Normally the

R-matrix can be found utilizing the so-called "hexagon equation", but once
again we will not go into the details of this derivation here but it relies on
similar properties required for the pentagon equation. We utilize a three anyon
system and execute two different sequences of basis changes and braidings that
produce the same result [15]. Note that this relation is analogous to equation
(3-9).

It is interesting to see what happens to this relation when we are dealing
with abelian anyons. In that case there is only one possible way to fuse them,
so the sum over µ′ becomes one term. This also means (Rc

ab)µ
′
µ is no longer a

matrix, but a number we are already familiar with:
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R : |ba; c, µ〉 → |ab; c, µ〉Rc
ab = |ab; c, µ〉eiθ. (3-23)

Next we discuss what is the simplest non-abelian anyon model capable
of universal quantum computation. As we will see the F and R matrices play
an important role.

3.3
Computation and Fibbonacci Anyons

We are interested in the possibilities of creating a universal quantum
computer with a suitable anyon model and Fibonacci anyons provide us with
the simplest model capable of doing so. Quantum computation allows us to
implement the NOON-like intereferometer described in the previous chapter
and, in particular, verify if there are any advantages in doing such metrology
experiments with particles that obey anyonic statistics over more conventional
approaches.

The literature is very extensive on this specific model [15, 29, 30, 31]. So
for that reason we shall present a more reduced and direct approach focusing
on introducing the model and its most important features. As a result most of
the discussion below is based on the work of Nayak et al [6]

In our model there are two types of labels, 1 and γ, with 1 being the
identity label. We end up with only one non-trivial fusion rule:

γ × γ = 1 + γ. (3-24)

This might seem familiar to the reader, it is the same model as in our second
example in section 3.2.1. This model receives its name from the fact a system
with n particles has a fusion space V 1

γn of dimension Fib(n), where Fib(n) gives
the n-th term of a Fibonacci sequence. To see this consider that our n anyons
are ordered in a line each with its respective label and look at the dimension
N1
γn of fusion space V 1

γn . If we progressively fuse every pair of particles note
that if the first fusion yields trivial charge 1 then the remaining n− 2 can fuse
in N1

γn−2 ways and if the first fusion is nontrivial then the remaining labels can
only fuse in N1

γn−1 ways. This way we get the following recursive relation:

N1
γn = N1

γn−1 +N1
γn−2 . (3-25)

Note as well that N1
γ = 0 as if we only have one particle it can’t change

labels and that N1
γ2 = 1. This way we get:

n = 1, 2, 3, 4, 5, 6, 7, 8, 9, ... (3-26)

N1
γn = 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
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This means that the dimension of fusion space V 1
γn grows in an equivalent way

to a Fibonacci sequence, which grows, approximately, according to "the golden
ratio" given by φ = 1

2(1 +
√

5) ≈ 1.618. The quantity φ will also be called the
quantum dimension dγ for Fibonacci anyons as it tells us the rate at which the
fusion space dimension increases.

To further define our model we need to find both the F-matrix and R-
matrix. This is equivalent to understanding the basis changes between the
possible fusion spaces and the effects braiding might have on our system.
As mentioned before, normally one would need to solve both the pentagon
equation and the hexagon equation, but we shall opt for a more straight forward
approach.

At this point we introduce a new notation and start to write our states
as |(•, •)1〉 and |(•, •)γ〉 where each dot represents a particle of charge γ, a
parentheses a fusion and the sub-index the resulting label of the fusion. This
notation is taken from Nayak et al. [6] but is also used extensively by other
researchers.

Note that in this scheme if we add a third particle there are only three
possible outcomes: |((•, •)1, •)γ〉, |((•, •)γ, •)γ〉 and |((•, •)γ, •)1〉. Let us also
write equation (3-21) for the F-matrix, in this new notation:

|(•, (•, •)i)k〉 =
∑
j

[F k
γγγ]ij|((•, •)j, •, )k〉, i, j, k = {1, γ}. (3-27)

One should note here that the states above form bases on a 3D Hilbert
space. In one basis the rightmost particles fuse first and in another the leftmost
fuse first and both bases are connected via the F-matrix. If our particles are
fusing to 1 then for Fibonacci anyons the following occurs according to the
fusion rules:

|(•, (•, •)γ)1〉 = |(•, •)γ, •)1〉. (3-28)
As on both bases we have only a single state with total label 1. Which means
that F 1

γγγ is simply a 1x1 "matrix" of value 1. Not only that but as described
by equation (3-27) F γ

γγγ has to take a two-by-two form because there are two
states on both bases with total label γ.

To find the F-matrix let us consider the following example:

|(•(•, (•, •)1)γ)1〉 = |((•, •)1, (•, •)1)1〉 (3-29)

= |(((•, •)1, •)γ), •)1〉.

This is simply the different ways we can fuse four particles and still have total
charge 1, an example of associativity that we can find the same way we did
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for example (3-28). Using equation (3-27) we can write the above example as:

|(•(•, (•, •)1)γ)1〉 = F11|(•((•, •)1, •)γ)1〉+ F1γ|(•((•, •)γ, •)γ)1〉 = (3-30)

= F11|((•, (•, •)1)γ, •)1〉+ F1γ|((•, (•, •)γ)γ, •)1〉 =

=
∑
j

(F11F1j + F1γFγj)|(((•, •)j, •)γ, •)1〉.

From that we conclude F1γ(F11 + Fγγ) = 0 and F11F11 + F1γFγ1 = 1. These
are just two of the relations we can obtain from the pentagon equation we
mentioned earlier which are called "consistency conditions" or "consistency
identities". This also means that F γ

γγγ is non-trivial.
We will not solve for the remaining conditions but as mentioned before

one can find the general equation in [15]. Using the other condition that the
F-matrix must also be unitary we get the following form for Fibonacci anyons:

F γ
γγγ =

F11 F1γ

Fγ1 Fγγ

 =
 φ−1 √

φ−1
√
φ−1 −φ−1

 . (3-31)

where φ is the golden ratio presented earlier.
The next step is to find the R-matrix. Normally those values would

be determined by the aforementioned hexagon equation and the consistency
identities that derive from it, we shall not be presenting it in full detail. For a
brief explanation we can say that the hexagon equation relies on knowing the
F-matrix first and ensuring that we can arrive at the same results by braiding
in between two basis changes or changing base in between two braidings, this
is equivalent to saying that RFR = FRF .

Let us write equation (3-22) in the new notation as well:

|(•, •)i〉 = [Ri
γγ]ii|(•, •)i〉, i = {1, γ}. (3-32)

Note that the states on the left and on the right are not the same, the particles
are now switched. The sum now disappears as there is only one way to fuse
the particles for each charge. This means that, much like the F-matrix, the
R-matrix is not only 2x2 but also block diagonal and there are only two 1x1
blocks, one where the total charge is 1 (R1 = [R1

γγ]11) and another for total
charge γ (Rγ = [Rγ

γγ]γγ).
Now we can apply the relation RFR = FRF and get the following
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equations:

R1F11R
1 = F11F11 + F1γR

1Fγ1, (3-33a)

R1F1γR
γ = F11F1γ + F1γR

γFγγ, (3-33b)

RγFγ1R
1 = Fγ1F11 + FγγR

γFγ1, (3-33c)

RγFγγR
γ = Fγ1F1γ + FγγR

γFγγ. (3-33d)

Then using the F-matrix from before we find the two eigenvalues of the R-
matrix:

R|(•, •)1〉 = e−4iπ/5|(•, •)1〉, (3-34a)

R|(•, •)γ〉 = −e−2iπ/5|(•, •)γ〉. (3-34b)

So the block diagonal form of the R-matrix in this basis is:

R =
[R1

γγ]11 [R1
γγ]1γ

[Rγ
γγ]γ1 [Rγ

γγ]γγ

 =
e−4iπ/5 0

0 −e−2iπ/5

 . (3-35)

Note that the conjugate eigenvalues are also a solution, these will represent
braidings in the opposite direction. We have to define the signs for clockwise
and counter-clockwise exchanges, the ones presented above are normally used
for clockwise exchanges.

Unfortunately for us this won’t be true every time as we see in the follow-
ing example: Consider the state: |((•, •)1, •)γ〉. it is simple enough to exchange
the two left-most particles with the R-matrix as it has a block diagonal form.
More specifically in this new basis it has the following eigenvalues and eigen-
vectors:

R|((•, •)1, •)γ〉 = e−4iπ/5|((•, •)1, •)γ〉, (3-36a)

R|((•, •)γ, •)γ〉 = −e−2iπ/5|((•, •)γ, •)γ〉, (3-36b)

R|((•, •)γ, •)1〉 = −e−2iπ/5|((•, •)γ, •)1〉. (3-36c)

So the matrix becomes:

R =


e−4iπ/5 0 0

0 −e−2iπ/5 0
0 0 −e−2iπ/5

 . (3-37)

Let us now try to exchange the two rightmost particles. The new R-
matrix no longer has a block diagonal form as |((•, •)1, •)γ〉 is no longer one
of the eigenvectors. The easiest approach then is to write our state in the
eigenbasis for the new R-matrix which we do with the F-matrix and equation
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(3-27):
|((•, •)1, •)γ〉 = F11|(•, (•, •)1)γ〉+ Fγ1|(•, (•, •)γ)γ〉. (3-38)

We can write this basis change as:
|((•, •)1, •)γ〉
|((•, •)γ, •)γ〉
|((•, •)γ, •)1〉

 =


φ−1 √

φ−1 0
√
φ−1 −φ−1 0
0 0 1



|(•, (•, •)1)γ〉
|(•, (•, •)γ)γ〉
|(•, (•, •)γ)1〉

 . (3-39)

Note that our third basis vector fuses to 1, so relation (3-28) applies and the
two-by-two block is the F γ

γγγ we presented in equation (3-31).
We then fall back to the previous case where the R-matrix is diagonal

which finally takes us to the last step: Undo the basis change. This is done by
the matrix F−1. The final state then becomes:

F−1RF |((•, •)1, •)γ〉 = −e
−iπ/5

φ
|((•, •)1, •)γ〉 −

ie−iπ/10
√
φ
|((•, •)γ, •)γ〉. (3-40)

Operation F−1RF is the one responsible for realizing the braidings so it would
be interesting to write it in matrix form. We can then repeat these calculations
for the remaining basis vectors |((•, •)γ, •)γ〉 and |((•, •)γ, •)1〉 so operator
F−1RF becomes:

F−1RF =


− e−iπ/5

φ
− ie−iπ/10√

φ
0

− ie−iπ/10√
φ

− 1
φ

0

0 0 −e−2iπ/5

 . (3-41)

What we have in the above example is a Hilbert space of three dimensions
created by fusions of three anyons with label γ. We proceeded then to use two
different bases (or fusion orders) that are connected via F -matrix to execute
any braiding between these three particles. Going back to the discussion
in section 3.1.1 we have just defined the generators of our group called σ1

(exchanges between the left most particles) and σ2 (exchanges between the
rigthmost particles), they are respectively the R-matrix and the F−1RF -
matrix. As expected the Yang-Baxter relation in equation (3-7) still holds:

σ1σ2σ1 = σ2σ1σ2 → (3-42)

→ RF−1RFR = F−1RFRF−1RF →

→


e
−6iπ

5
φ

ie
−13iπ

10√
φ

0
ie
−13iπ

10√
φ
− e

−4iπ
5
φ

0

0 0 −e−6iπ
5

 =


e
−6iπ

5
φ

ie
−13iπ

10√
φ

0
ie
−13iπ

10√
φ
− e

−4iπ
5
φ

0

0 0 −e−6iπ
5

 .

The example we discussed is extremely important because it also is the
most commonly used to show that this model of anyons is capable of creating
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a universal quantum computer [31].
To use this model in a quantum computer we must define what our logical

qubits are going to be in a system of Fibonacci anyons, the most common
definition uses the base we were already working with:

|((•, •)1, •)γ〉 = |0〉, (3-43a)

|((•, •)γ, •)γ〉 = |1〉, (3-43b)

|((•, •)γ, •)1〉 = |N〉. (3-43c)

Where |0〉 and |1〉 are our logical states and |N〉 is a noncomputational state.
This is necessary as the Hilbert space for these three Fibonacci anyons trios is
3-dimensional but we require two level systems to create a quantum computer.
Then in this model we have to be careful so as to not use |N〉 for any logical
operations as it holds no logical value. In this arrangement trios of anyons will
represent our qubits and even more relevant, note that this automatically gives
us a consistent way to measure the qubits of our computer: If we want to know
the result of a computation we must only fuse the first anyon pair of a qubit
and look to the results. If it fuses to γ the qubit is |1〉, if it fuses to 1 the qubit
is |0〉.

For this to work we have to arrange our computation in such a way
that the amplitude for state |N〉 is zero at the beginning and end of every
operation, in the cases where this state acquires amplitude it is normally said
that a "leakage error" occurred. Fortunately for us the matrices R and F−1RF

are block diagonal, which means we do not mix our logical states with the
noncomputational one during braiding operations. This is exceptionally useful
as it allows us to execute single qubit operations (such as a bit flip or Hadamard
gate) without worrying about the state |N〉.

We won’t delve deep into the reason as to why this allows for universal
quantum computation as we are more interested in implementing our NOON-
like interferometer, but explicit details can be found in Nayak et al., Kitaev et
al. and Dawson et al. [6, 23, 33]. The important idea is the fact that we can
find a braiding that corresponds to a unitary operation arbritarily close to any
desired operation. To do so we can simply increase the braid to get closer to
the target operation. In an effort to be more precise we claim that the braid
increases logarithmically with respect to the error distance from the operation.

Then if we want to execute a computation in this model we first need to
find the braiding that corresponds to our desired operation. Doing so might
seem hard at first as the difficulty would seem to grow exponentially with the
braid length [30, 29]. On the other hand there are other, more efficient ways

DBD
PUC-Rio - Certificação Digital Nº 1812665/CA



Chapter 3. Anyons and quantum computers 64

to do find such braiding.
The Solovay-Kitaev algorithm allows us to concatenate shorter braids in

order to get closer to the target operation in a much more efficient manner. It
constructs a brading that is polylogarithmically long for a given error distance
and even more impressively it is completely possible to run such an algorithm
in a classical computer [33].

As we have mentioned before then executing single-qubit operations
shouldn’t be a problem in this model, but we need to go further to create a
universal quantum computer. We need at least one "entangling gate", meaning
we need to recreate two-qubit gates by braiding particles from different qubits
[23]. This becomes a much more difficult task as we are now dealing with six
anyons in a 13 dimensional Hilbert space, our braiding matrices become 13x13
block diagonal matrices with one 5x5 block (for total label 1) and another 8x8
block (for total label γ )[30]. Fortunately though we know from Freedman et
al. [31] that there is a solution to our problem, we can safely assume that there
exists a braiding that corresponds to any operation we might want to replicate
in a two-qubit space.

Again we will not enter into specifics of finding such gates, but braidings
for more common gates such as the CNOT have already been designed in two
separate research papers [30, 29]. We shall only focus on one those bellow,
specifically a design from Bonesteel et al. [30]. It works exactly as expected,
when the control qubit is in state |((•, •)1, •)γ〉 = |0〉 the target is left alone
and when the control is in state |((•, •)γ, •)γ〉 = |1〉 the target flips value.

Doing so requires two basic ideas. First, a pair of anyons from the control
qubit will be braided across the target as an immutable pair, if that pair fuses
to 1 then no transition occurs, but if the pair fuse to γ then a transition
occurs. This means that if the control pair we choose determines the value of
the control qubit, as is the case, we automatically get a controlled operation.
Second, we do not do exchanges with more than two target particles at a
time. The only non-trivial case is when the control pair fuses to γ, which is
equivalent to one anyon, meaning the problem reduces to the previous one of
finding 3-anyon braidings.
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Figure 3.6: Figure and values taken from Bonesteel et al. [30]. (a) A braiding
that injects one anyon from one qubit into another qubit. It approximates
the identity to a distance of ε = 1.5 × 10−3. The products of σ1 and σ2
represent the correspondent unitary operation and are products of matrices
R and F−1RF respectively in accordance to equation (3-43). (b) A braiding
that approximates a NOT gate with error distance ε = 8.5 × 10−4. (c) A
braiding that approximates a CNOT gate utilizing braidings a and b. First it
injects two particles from the control qubit into the target, then it executes
a NOT-gate and finally it ejects the particles back to the control qubit. The
errors distance from a real CNOT-gate are ε = 1.8× 10−3 and ε = 1.2× 10−3

when the total label of the six anyon system is 1 or γ , respectively. it is
important to note that one could reduce the error distances even further by
utilizing the Solovay-Kitaev algorithm on braidings (a) and (b).

At this point we can recall our last discussion in the previous chapter
about the logical interferometer constructed for NOON-like states. The CNOT
is especially interesting to us as it is integral to executing our circuit presented
in figure 2.12 as is the Hadamard gate and the phase gate. Both of those
are single qubit operations and approximations can be easily found with the
Solovay-Kitaev algorithm. For illustration purposes we present a braiding that
approximates the CNOT gate in figure 3.6 and the Hadamard gate in figure
3.7:

Figure 3.7: Braiding that approximates a Hadamard gate with error distance
of ε = 3 × 10−3. σ1 and σ2 are the braiding matrices for our model shown
previously. Braiding and values taken from Field et al.[34]

It is important to note that those braidings are not necessarily the
smallest or most precise ones, again, with the Solovay-Kitaev algorithm one
can grow those braidings to obtain better precision.
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Our purpose here is to show that we can utilize Fibonacci anyons to
recreate not only our logical beamsplitter but any computation. Doing so
requires the following steps:

1. Writing the computation as a quantum circuit.

2. Decomposing the circuit in one-qubit and two-qubit gates.

3. Utilizing the Solovay-Kitaev algorithm to write the braidings that corre-
spond to the target gates with the required precision.

4. Use simple substitution to write the computation as concatenated braid-
ings of however many anyons are required.

Following the steps above we can write our logical interferometer with
arbitrary precision as a braiding of anyons as long as we can implement the
Solovay-Kitaev algorithm. We shall not do it here so as to not extend this
discussion too much. The most important point to make is that one can create
an anyon interferometer by simply executing computations on a universal
quantum computer based on Fibonacci anyons.
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4
Anyon interferometry

In Chapter 2 we explored linear optics and interferometry from the
perspective of quantum computing. Chapter 3 dealt with anyons and universal
quantum computation. In the present chapter we combine those ideas and
explore how a universal quantum computer based on anyonic linear optics can
be used to perform interferometry at the Heisenberg limit.

Tosta et al. [7] have presented a universal quantum computer model
based on linear optics for "fermionic anyons" which we shall go over here.
Here is a definition for fermionic anyons: One dimensional particles defined
from the creation and annihilation operators a†i and ai that follow these anti-
commutation relations:

aia
†
j + e−iθεija†jai = δij, (4-1a)

aiaj + eiθεijajai = 0, (4-1b)

where θ is the exchange phase of the particles and εij is given by:

εij =


1, if i < j

0, if i = j

−1, if i > j

. (4-2)

Note that these are remarkably similar to equations (2-42a) and (2-42b) but
now account for an anyon exchange phase, hence the name fermionic anyons.

4.1
Linear optics and operator representation

On the interferometry chapter we learned that bosons and fermions follow
specific commutation and anti-commutation relations expressed in equations
(2-1a), (2-1b), (2-42a) and (2-42b). We also have used a representation of multi-
mode states of the type |n1〉|n2〉...|nm〉 where m represents each mode and nm
the number of particles in a mode. This was good enough at that moment but
now we wish to switch to a more general notation. For bosons:

|n1, n2, ..., nm〉 = (a†1)n1(a†2)n2 ...(a†m)nm√
n1!n2!...nm!

|0〉, (4-3)

where the state is normalized, as seen by the denominator, |0〉 represents the
vacuum, a†i the appropriate creation operator and nm the number of particles
on mode m.
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For fermions:

|n1, n2, ..., nm〉 = (a†1)n1(a†2)n2 ...(a†m)nm|0〉. (4-4)

Remember that we can no longer have more than one particle per mode when
dealing with fermions, which means that in this context ni = i, i = {0, 1}.
This will also be the case for fermionic anyons.

Let us then describe the optical elements we used in Chapter 2 in a
different manner. A phase-shifter and a beamsplitter are both passive devices,
meaning they require no power, feedback or user input to work, but the phase-
shifter is a one mode device and the beamsplitter a two-mode device.

We have already explained the action of a phase-shifter in a quantum
state. In this new notation, if shifting the phase by φ, it takes the form:

PSi(φ)|n1, n2, ..., nm〉 = eiφni|n1, n2, ..., nm〉. (4-5)

where i is the mode the phase-shifter acts upon. The phase-shifter is now an
evolution operator PSi = eiφHi where Hi = a†iai = Ni is the Hamiltonian.
We can change perspectives and see how the phase-shifter acts on the creation
operators:

PSi(φ)a†jPSi(−φ) = eiφδija†j. (4-6)
The beamsplitter is now going to be an evolution operator BSij = eiφHij

where Hij = a†iaj + a†jai is the hopping Hamiltonian. We can then act on the
creation operators:

BSij(φ)
a†i
a†j

BSij(−φ) =
 cosφ i sinφ
i sinφ cos θ

a†i
a†j

 . (4-7)

These optical element Hamiltonians are the same independent of the
particle type, so we can use them for the fermionic anyons mentioned before
and calculate their evolution.

4.2
Linear optics for fermionic anyons

Despite the optical elements remaining the same the evolution might
change, meaning we have to solve the Heisenberg equation of motion for these
new particles.

For the phase-shifters we have that:

i
da†j
dφ

= [Hi, a
†
j] = [a†iai, a

†
j] = a†iaia

†
j − a

†
ja
†
iai. (4-8)

Then for i = j we simply recover the fermionic results:

PSi(φ)a†iPSi(−φ) = eiφa†i . (4-9)
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This is expected as the anti-commutation relations transform into the fermion
relations. For i 6= j:

a†iaia
†
j − a

†
ja
†
iai = −a†ie−iθεija

†
jai − a

†
ja
†
iai = (4-10)

= eiθεije−iθεija†ja
†
iai − a

†
ja
†
iai = 0.

Then the complete result becomes:

PSi(φ)a†jPSi(−φ) = eiφδija†j. (4-11)

Let us now take a look at the beamsplitters. The equations we need to
solve are:

i
da†i
dφ

= [Hij, a
†
i ], (4-12a)

i
da†j
dφ

= [Hij, a
†
j]. (4-12b)

The commutators are calculated with the anti-commutation relations:

[Hij, a
†
i ] = a†j{1− (1− eiθ)Ni}, (4-13a)

[Hij, a
†
j] = a†i{1− (1− e−iθ)Nj}. (4-13b)

To simplify the calculations we do a direct substitution:

i
da†i
dφ

= a†j{1− (1− eiθ)Ni} = a†jW
(θ)
i . (4-14)

We have two variables a†i and a†j and two equations, meaning we could
try to solve the system as is, but we opt for a different method that gives us
a new system that is easier to solve. By computing [Hij, a

†
jW

(θ)
i ] we can write

the Heisenberg equation of motion for this operator:

i
d(a†jW

(θ)
i )

dφ
= a†i . (4-15)

we then have two new equation systems between operators ai and a†jW
(θ)
i and,

analogously, between operators aj and a†iW
(θ)
j . The systems take the form:

i
d(a†iW

(θ)
j )

dφ
= a†j, (4-16a)

i
da†j
dφ

= a†iW
(θ)
j . (4-16b)
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From which we can find the solutions:

BSij(φ)a†iBSij(−φ) = cosφa†i + i sinφa†jW
(θ)
i , (4-17a)

BSij(φ)a†jBSij(−φ) = cosφa†j + i sinφa†iW
†(θ)
i . (4-17b)

At this point our solution would be complete if it were not for another problem.
In fermionic and bosonic modes that do not appear in the beamsplitter
hamiltonian there are creation operators that commute with Hij but in this
model of fermionic anyons this is no longer true. For creation operator a†k for
i < k < j we have:

[Hij, a
†
k] = eiφ(a†iaj+a

†
jai)a†k − a

†
ke
iφ(ei2θa†iaj+e

−i2θa†jai). (4-18)

This is treated as an "effective beamsplitter" that creates a phase based on
the number of ocuppied modes between i and j. Accordingly we define a new
operator:

BS
(α)
ij (φ) = eiφ(eiαa†iaj+e

−iαa†jai). (4-19)
And modify the solutions to:

BS
(α)
ij (φ)a†iBS

(α)
ij (−φ) = cosφa†i + ieiα sinφa†jW

(θ)
i , (4-20a)

BS
(α)
ij (φ)a†jBS

(α)
ij (−φ) = cosφa†j − ie−iα sinφa†iW

†(θ)
i . (4-20b)

Let us consider an example on a three mode system and a balanced
beamsplitter (φ = π

4 ) acting on modes 1 and 3. Consider the state |1, 1, 0〉, we
can rewrite it as a†1a†2|0〉 = −ieiθa†2a†1|0〉. The first thing we do is commute the
beamsplitter operator with the creation operator on mode 2 using equation
(4-19):

−ieiθBS13

(
π

4

)
a†2a

†
1|0〉 = −ieiθa†2

[
BS

(2θ)
13

(
π

4

)]
a†1|0〉. (4-21)

Now we just need to evolve the operator on a†1 using equations (4-20a), (4-20b)
and the fact that W (θ)

i |0〉 = |0〉:

−ieiθa†2
[
BS

(2θ)
13

(
π

4

)]
a†1|0〉 = −ie

iθ

√
2
a†2(a†1 + iei2θa†3)|0〉. (4-22)

Using then the commutation relation a†2a†1 = −e−iθa†1a†2 again and we get:

−ie
iθ

√
2
a†2(a†1 + ie−i2θa†3)|0〉 = 1√

2
(a†1a†2 − ie−iθa†2a†3)|0〉. (4-23)

Then the effect of the beamsplitter becomes:

BS13

(
π

4

)
|1, 1, 0〉 = 1√

2
(|1, 1, 0〉 − ie−iθ|0, 1, 1〉). (4-24)

Such a result is remarkable because it shows that if an anyon switches
from mode 1 to 3 while another occupies mode 2 then a relative phase appears,
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which would not happen if mode 2 was unoccupied. We have seen a similar
behaviour before on the Aharonov-Bohm effect we mentioned in the last section
but now this is taking place over one dimensional space.

This closes our discussion of fermionic anyon linear optics. Now, we want
to show one can do computation by exploiting this, but before we do so it is
important to introduce a similar model but now based on "bosonic anyons". We
want to consider what happens when there are no restrictions on the amount
of particles per mode.

4.3
Bosonic anyons and the Houng-Ou-Mandel Effect

As we have just mentioned working with bosonic anyons is interesting
because we no longer have the limitation of one particle per mode and this
might open up new opportunities in realizing "optical" setups. The following
discussion is again based Tosta’s work in unpublished notes [35].

Bosonic anyons will follow similar relations to fermionic anyons. They
are as follows:

aia
†
j − e−iθεija

†
jai = δij, (4-25a)

aiaj − eiθεijajai = 0. (4-25b)

Where θ is the exchange phase of the particles and εij is given by:

εij =


1, if i < j

0, if i = j

−1, if i > j

. (4-26)

The linear optics operators won’t change as expected:

PSi = eiφHi , (4-27a)

BSij = eiφHij . (4-27b)

For Hi = a†iai = Ni and Hij = a†iaj + a†jai. On the other hand, now the states
and the actions of the creation and annihilation operators will be defined as
such:

|n1, n2, ..., nm〉 = (a†1)n1(a†2)n2 ...(a†m)nm√
n1!n2!...nm!

|0〉, (4-28a)

a†i |n1, n2, ..., ni, ...nm〉 = eiθ
∑i−1

k=1 nk
√
ni + 1|n1, n2, ..., ni + 1, ...nm〉 , (4-28b)

ai|n1, n2, ..., ni, ...nm〉 = e−iθ
∑i−1

k=1 nk
√
ni|n1, n2, ..., ni − 1, ...nm〉. (4-28c)
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Note that creation and annihilation generate exchange phases.
To solve the dynamics of this system we run into some issues, but we

can use the discussion on section 2.1.3 to visualize how the number operator
evolves when acted upon by the beamsplitter operator.

First let us recall the following operators from section 2.1.3:

J1 = 1
2(a†iaj + a†jai), (4-29a)

J2 = i

2(aia†j − a
†
iaj), (4-29b)

J3 = 1
2(Ni −Nj). (4-29c)

Where Ni and Nj are the number operators.
On that same section we calculated the commutator [J1, J3] = iJ2, we

will refrain from calculating the remaining relations, but know that this result
generalizes to:

[Ji, Jj] = 2iεijkJk, i, j, k = {1, 2, 3}. (4-30)
where εijk is the Levi-Civita symbol.

Fisrt, note that BS(φ) = ei(2φ)J1 and:

Ni = 1
2N + J3, (4-31a)

Nj = 1
2N − J3. (4-31b)

where N = Ni +Nj is the total number operator.
So to find out the action of the beamsplitter on the number operators we

do:

eiφJ1


J1

J2

J3

 e−iφJ1 =


1 0 0
0 cosφ − sinφ
0 sinφ cosφ



J1

J2

J3

 . (4-32)

Doing the appropriate substitutions from the previous equations and isolating
for Ni and Nj we get:

Ni(φ) = 1 + cos 2φ
2 a†iai + 1− cos 2φ

2 a†jaj −
i sin 2φ

2 (a†iaj − a
†
jai), (4-33a)

Nj(φ) = 1− cos 2φ
2 a†iai + 1 + cos 2φ

2 a†jaj + i sin 2φ
2 (a†iaj − a

†
jai). (4-33b)

Our next step to solve the dynamics of this problem then is to exploit
the algebra between the relevant operators. We do so because the previous
method of solving the coupled Heisenberg equations is no longer optimal.
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Let us calculate [Hij, a
†
i ] = [2J1, a

†
i ] and [2J1, a

†
j]:[

(2J1) , a†i
]

= a†i ((cos θ − 1) (2J1)− sin θ (2J2)) + a†j, (4-34a)[
(2J1) , a†j

]
= a†j ((cos θ − 1) (2J1)− sin θ (2J2)) + a†i . (4-34b)

Which implies:

(2J1) a†i = a†i (2 (cos θJ1 − sin θJ2)) + a†j, (4-35a)

(2J1) a†j = a†j (2 (cos θJ1 − sin θJ2)) + a†i . (4-35b)

Then we sum and subtract the above equations:

(2J1)
(
a†i + a†j

)
=
(
a†i + a†j

)
(2 (cos θJ1 − sin θJ2) + 1)

)
, (4-36a)

(2J1)
(
a†i − a

†
j

)
=
(
a†i − a

†
j

)
(2 (cos θJ1 − sin θJ2)− 1)

)
. (4-36b)

Now we can multiply the above equations by powers of 2J1 to get an expanded
taylor series of the exponetial function which we contract to:

eiφ(2J1)
(
a†i + a†j

)
=
(
a†i + a†j

)
eiφ(2(cos θJ1−sin θJ2)+1), (4-37a)

eiφ(2J1)
(
a†i − a

†
j

)
=
(
a†i − a

†
j

)
eiφ(2(cos θJ1−sin θJ2)−1). (4-37b)

Which leads us to:

eiφ(2J1)a†i =(cosφa†i + i sinφa†j)eiφ(2(cos θJ1−sin θJ2)), (4-38a)

eiφ(2J1)a†j =(i sinφa†i + cosφa†j)eiφ(2(cos θJ1−sin θJ2)). (4-38b)

To simplify we do the following substitution:

cos θJ1 − sin θJ2 = eiθJ3J1e
−iθJ3 → (4-39)

→ eiφ(2(cos θJ1−sin θJ2)) = eiθJ3eiφ(2J1)e−iθJ3 .

Finally, we have:

a†i (φ) =(cosφa†i + i sinφa†j)eiθJ3eiφ(2J1)e−iθJ3e−iφ(2J1), (4-40a)

a†j(φ) =(i sinφa†i + cosφa†j)eiθJ3eiφ(2J1)e−iθJ3e−iφ(2J1). (4-40b)

Observe that we can commute the operator G(θ, φ) = eiθJ3eiφ(2J1)e−iθJ3
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with creation operators by using the following relations:

G(nθ, φ)a†i =(cosφa†i + ie−inθ sinφa†j)G((n+ 1)θ, φ), (4-41a)

G(nθ, φ)a†j =(cosφa†j + ieinθ sinφa†i )G((n+ 1)θ, φ). (4-41b)

This means we can finally calculate the effect of a beamsplitter on a general
state.

Let us consider an example. We will repeat our calculations in section
2.1.1 for the Hong-Ou-Mandel effect but this time for the bosonic anyons we
just described. We will be working with a balanced beamsplitter acting on
modes 1 and 2 on the state |1, 1〉. The unitary that describes the beamsplitter
is: ei(π/2)J1 . This gives us:

(a†ia
†
j)out|0〉 = ei(π/2)J1a†ia

†
j|0〉 = (4-42)

= ( 1√
2
a†i + i

1√
2
a†j)G(θ, π/4)a†j|0〉 =

= ( 1√
2
a†i + i

1√
2
a†j)(

1√
2
ieiθa†i + 1√

2
a†j)G(2θ, π/4)|0〉 =

= 1
2(eiθ(ia†i )2 + a†ia

†
j − eiθa

†
ja
†
i + i(a†j)2)|0〉 =

= i

2(eiθ(a†i )2 + (a†j)2)|0〉 = i√
2

(eiθ|2, 0〉+ |0, 2〉).

As expected for θ = 0 we recover the usual result on equation (2-8) for T = 1/2

4.4
Computing with fermionic anyons

Now we switch back to our discussion of fermionic anyons. We have
completely defined two optical elements and their action on our particles, the
next step is to show how we can exploit this to create a universal quantum
computer based on linear optics according to Tosta et al. [7].

We need three things to realize this model:

– 1. An enconding. We need to devise a system of fermionic anyons that
is ideal to represent logical qubits |0〉 and |1〉 and be able to execute
logical operations on the qubits by utilizing unitary operators on the
system.

– 2. Universal computation. The unitaries that we can use need to be
able to realize every logical operation a computer might need. As we have
mentioned before in section 2.3 this means we need a set of operators we
can mix and match so as to build the operations we want.
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– 3. Measurements. If we can’t take data out of our system then the
computation is useless as we can’t access its results.

The reader might realize that we concluded Chapter 3 by presenting these
same things for Fibonacci anyons:

– 1. We presented a basis that encodes our qubits into trios of anyons that
fuse a certain way.

– 2. We encountered braidings on those systems that represent logical
operations on the qubits and we made sure that we could not only
arbitrarily approximate any one-qubit gate through Solovay-Kitaev, but
also reproduce the most common entangling gate, the CNOT.

– 3. We defined our measurements as fusing the first anyon pair of a trio
that forms a qubit.

We must repeat this here for the new model.

4.4.1
Encoding

To encodde n qubits we use 2n modes. This way we have:

|0〉 = |1, 0〉, (4-43a)

|1〉 = |0, 1〉. (4-43b)

Then a 2-qubit system is of the form:

|00〉 = |1, 0, 1, 0〉, (4-44a)

|01〉 = |1, 0, 0, 1〉, (4-44b)

|10〉 = |0, 1, 1, 0〉, (4-44c)

|11〉 = |0, 1, 0, 1〉. (4-44d)

We need not worry about the exchange phase θ as these anyons obey the Pauli
Exclusion Principle. If we were dealing with the bosonic anyons of the previous
section we would need to take that into account.

4.4.2
Universal Computation

The next step is to show that we are capable of universal quantum
computation. As previously said, to do so we need to be able to create a
set of gates that can construct every other possible gate. Just like we did for
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Fibonacci anyons, we want a set of one-qubit gates and one entangling two-
qubit gate. The encoding we just defined comes into play to help us with this
task as it allows us to use any logical one-qubit gate with just phase-shifters and
beamsplitters. The action of a phase-shifter on the logical basis is as follows:

PS2(φ)|0〉 = PS2(φ)|1, 0〉 = |1, 0〉 = |0〉, (4-45a)

PS2(φ)|1〉 = PS2(φ)|0, 1〉 = eiφ|0, 1〉 = eiφ|1〉. (4-45b)

Note that this is just a rotation around the Z axis in the Bloch sphere by φ
degrees.

The beamsplitter acts as:

BS12(φ)|0〉 = BS12(φ)|1, 0〉 = (4-46a)

= cosφ|1, 0〉+ i sinφ|0, 1〉 = cosφ|0〉+ i sinφ|1〉,

BS12(φ)|1〉 = BS12(φ)|0, 1〉 = (4-46b)

= cosφ|0, 1〉+ i sinφ|1, 0〉 = cosφ|1〉+ i sinφ|0〉.

Note as well that this is equivalent to rotating the logical states around the
X axis in the Bloch sphere. This shows us we can execute any one-qubit gate,
given we can do arbitrary rotations around two different axes in the Bloch
Sphere. The operation RẑRx̂Rẑ, or, in this model, eiαPS1(β)BS12(γ)PS2(δ)
allows us to build any unitary by varying parameters α, β, γ and δ. The first
operator acts as global phase. We can see this operation represented on figure
4.1.

1
1

2

12

2

PS (β)

PS (δ)

BS (γ) = |ψ U|ψU

Figure 4.1: General unitary one-qubit gate built from phase-shifters and
beamsplitters on the fermionic anyons computational model. On the left we
have the two modes that anyons can occupy and on the right the qubit |ψ〉
before and after general unitary U . The parameters α, β, γ and δ can be chosen
so as to create a general unitary.

Now that single-qubit gates are no longer an issue we switch our focus
to try and create an entangling two-qubit gate. The operation as presented by
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Tosta [7] is: BS12(π/4)BS23(π/2)BS13(−π/4)BS23(−π/2)BS12(−π/4) which
is explicit in figure 4.2.

1
12

2
BS (π/4) BS (-π/4)

BS (π/2)

BS (-π/4)

BS (-π/2)

12

23 23

13

3
4

Figure 4.2: Unitary 2-qubit gate built from beamsplitters on the fermionic
anyons computational model. On the left we have the four modes that anyons
can occupy, which is equivalent to two qubits.

In matrix form, in the encoding basis, this translates to:

C(θ) = Rẑ

(
π

2

)
⊗ |0〉〈0|+Rn̂

(
π

2

)
⊗ |1〉〈1| = (4-47)

=


e−i

π
4 0 0 0

0 1−i cos θ√
2 0 i sin θ√

2
0 0 ei

π
4 0

0 i sin θ√
2 0 1+i cos θ√

2

 .

where n̂ = (sin θ, 0, cos θ). From this matrix we can see that this is, in fact,
entangling.

In order to be thorough one should check how much the unitary above is
entangling, meaning we should exhibit its entangling power. Entangling power
is defined by Zanardi et al. as the average amount of entanglement produced
by any unitary operation U over a distribution of unentangled states [36]. To
quantify entanglement Zanardi et al. defines an entanglement measure of state
|ψ〉 in a Hilbert space by:

E(|ψ〉) = 1− Tr1(ρ2), ρ = Tr2(|ψ〉〈ψ|), (4-48)

which quantifies the purity of the reduced density matrix ρ of a bipartite
system.

We shall not do these calculations for C(θ) here but they are provided
by Tosta in the original source [7] and the entangling power has the following
expression:

ep(C(θ)) = 1− cos4 θ

2 . (4-49)
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This means we have maximal entangling power for θ = π and minimal for
θ = 0. In fact, C(θ) is no longer an entangling gate for the minimum value of
entangling power, so this computational model relies on the fact that θ 6= 0.

What is most interesting about this is not that C(θ) is entangling only
for θ 6= 0, but that, according to Bremner et al. [37], one can construct CNOT
gates with any two-qubit entangling gate and some one-qubit gates where the
number of necessary entangling gates will be given by their entangling power.

4.4.3
Measurement

All that is left for us to define this model is understanding how to extract
information at the end of a computation. As the model is based on linear optics
and the logical qubits are defined by occupied an unoccupied modes this task
become extremely simple: We add detectors at the end of the "optical path"
our fermionic anyons have followed. If the first detector of the pair clicks then
that qubit is |0〉, and if the second detector of the pair clicks that qubit is |1〉.

4.5
NOON-like interferometer

At this point we have completely defined a new model based on linear
optics for 1D fermionic anyons. Next we discuss the possibilities of our NOON-
like intereferometer from section 2.3 in this new model. This is specially
relevant as it would allows us to build such a device by exploiting linear optics
systems, but as we will see we are limited by specific values of the anyonic
phase in our current implementation.

It is not always possible to work with the original circuit we devised. In
this new model it is not obvious how to decompose the CNOT gate in terms
of the new elementary gates. However, it is clear that such a decomposition
is possible. For example, we could apply the Solovay-Kitaev algorithm to
approximate a CNOT using the new C2 operation and other one-qubit gates.
Another idea would be to use the work of Bremner et al. [37] mentioned above
to find a decomposition. Despite that, we will take an alternative route of
not using the CNOT at all and devise a new circuit that also reaches the
Heisenberg limit, but uses the elementary operations of the fermionic model.
This approach while not as general as those other two is a lot easier and is a
good starting point to understand our options in the new model.
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First, consider the gate C2(θ):

C2(θ) =


e−2iπ4 0 0 0

0 −i cos θ 0 i sin θ
0 0 e2iπ4 0
0 i sin θ 0 i cos θ

 . (4-50)

Observe how it acts on the basis states:

C2 (θ)|00〉 = −i|00〉, (4-51a)

C2 (θ)|01〉 = −i cos θ|01〉+ i sin θ|11〉, (4-51b)

C2 (θ)|10〉 = i|10〉, (4-51c)

C2 (θ)|11〉 = i sin θ|01〉+ i cos θ|11〉. (4-51d)

This behaves like a controlled operation where the first qubit is the target and
the second qubit the control. In case the control is |1〉 it creates a superposition
according to θ and the value of the target, if the control is |0〉 it adds a global
phase to the original state.

We can attempt to build a beamsplitter by constructing an analogous
circuit with C2(θ) taking the place of the CNOTs (See figure 4.3). It is
important to also move the Hadamard gate to the last qubit as that will now
act as the control. We refer to the unitary that represents our beamsplitter as
LBS(θ). For two qubits in matrix form it becomes:

LBS(θ) = C2(θ)× (I ⊗H)× C2(θ) =

= 1√
2


−1 − cos θ 0 sin θ
− cos θ 1 − sin θ 0

0 − sin θ −1 − cos θ
sin θ 0 − cos θ 1

 . (4-52)

DBD
PUC-Rio - Certificação Digital Nº 1812665/CA



Chapter 4. Anyon interferometry 80

H

C2
C2

C2
C2

C2
C2

C2
C2

Figure 4.3: New beamsplitter LBS(θ) for N qubits with C2(θ) taking the place
of the CNOTs and the Hadamard in a different qubit.

Note that for θ = π/2 we get a form that is remarkably similar to the
LBS in equation (2-58) in section 2.3 with the exception of some signs. We
then focus on both C2(π/2) and LBS(π/2), interestingly the value of θ stands
in the middle ground between bosons and fermions. These operators act on
the basis states in the following way:

C2
(
π

2

)
|00〉 = −i|00〉, (4-53a)

C2
(
π

2

)
|01〉 = i|11〉, (4-53b)

C2
(
π

2

)
|10〉 = i|10〉, (4-53c)

C2
(
π

2

)
|11〉 = i|01〉. (4-53d)

For this value of θ, C2 becomes especially significant. When the control qubit
is |1〉 it now flips the target qubit and adds a global phase, if the control is |0〉
it just adds the global phase to the state.

As for LBS(π/2), its action on the basis states is:

LBS
(
π

2

)
|00〉 = |00〉 − |11〉√

2
, (4-54a)

LBS
(
π

2

)
|01〉 = |01〉 − |10〉√

2
, (4-54b)

LBS
(
π

2

)
|10〉 = |01〉+ |10〉√

2
, (4-54c)

LBS
(
π

2

)
|11〉 = |00〉+ |11〉√

2
. (4-54d)
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This relation still holds for N qubits, is remarkably similar to our previous
logical beamsplitter and we end up with maximally entangled states at the
end.

To see this we can perform a Schmidt decomposition to get the Schmidt
coefficients. These coefficients must all have the same value for maximally
entangled states, while for separable states we have different coefficients
[15, 25]. First calculate the density matrix for each state:

ρ1 =
(
|00〉 − |11〉√

2

)(
〈00| − 〈11|√

2

)
= 1

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 , (4-55a)

ρ2 =
(
|01〉 − |10〉√

2

)(
〈01| − 〈10|√

2

)
= 1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 , (4-55b)

ρ3 =
(
|01〉+ |10〉√

2

)(
〈01|+ 〈10|√

2

)
= 1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , (4-55c)

ρ4 =
(
|00〉+ |11〉√

2

)(
〈00|+ 〈11|√

2

)
= 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (4-55d)

Then we can calculate the partial traces:

TrB[ρ1] = TrB[ρ2] = TrB[ρ3] = TrB[ρ4] = 1
2

1 0
0 1

 = 1
2I. (4-56)

Where, the sub-index B means we are "tracing out" the second subspace.
The partial traces are all 1

2I and the Schmidt coefficients can be found by
doing the square root of the eigenvalues. In doing so we get 1√

2 with multiplicity
two. This proves that these are all, in fact, maximally entangled states.

As we have said before for N qubits we still have the basis states taken
to maximally entangled states. To keep it short we shall omit the complete
demonstration here but it can be reached by direct use of mathematical
induction. Instead we want to present an argument that should be enough
to understand this.

C2(π/2) acts in a similar way to a CNOT, the second qubit acts as the
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control and, if it is |1〉, flips the target (the first qubit). Then for N qubits
the first wave of C2(π/2) operations will have two outcomes dependent on the
value of the last qubit:

– 1. Control |0〉: Leave the state untouched with the exception of a new
global phase. Either -i, -1, i or 1.

– 2. Control |1〉: Flip every qubit except for the control and add a new
global phase. Either -i, -1, i or 1.

The Hadamard gate then sets the control qubit to a superposition:

– 1. Control |0〉: |0〉+|1〉√
2

– 2. Control |1〉: |0〉−|1〉√
2

The second wave of C2(π/2) operations creates a superposition between
the original state and one where every qubit is flipped and changes the global
phase to either -i, -1, i or 1:

– 1. Control |0〉: |0110001...0〉∓|1001110...1〉√
2

– 2. Control |1〉: |0110001...1〉±|1001110...0〉√
2

The sign of the relative phases will be determined by the control qubit
and the number of target qubits that share the same value of the control, we
will call this Ns. If Ns = 2m, for integer m, control qubit |0〉 leads to +1
relative phase and control qubit |1〉 leads to -1 relative phase. On the other
hand if Ns = 2m + 1, control qubit |0〉 leads to -1 relative phase and control
qubit |1〉 leads to +1 relative phase.

Figure 4.4 summarizes this argument. The states depicted on the equa-
tions and the figure are just for illustration purposes. The argument does not
loose generality and works for any basis state with N qubits.

So for any basis state for N qubits the LBS(π/2) will take it to a
superposition of itself and a state with all qubits flipped. These are always
maximally entangled states, we can see that by taking the partial traces and
realizing they are always equal to 1

2I.
For N qubits we are only interested in two basis elements:

LBS
(
π

2

)
|00 . . . 0〉 = |0. . . 0〉 ∓ |1. . . 1〉√

2
= |GHZ∓〉, (4-57a)

LBS
(
π

2

)
|11 . . . 1〉 = |0. . . 0〉 ± |1. . . 1〉√

2
= |GHZ±〉. (4-57b)

which is the same result from equations (2-57a) and (2-57b), except the GHZ
states can be switched around. This means that the same result for phase
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|0110001...i
|0110001...0

|0110001...0

|0110001... (|0 +|1 )

C2

C2

H

|0110001...1

|1001110...1

C2

C2

H

2
|1001110... (|0 -|1 )

2

|0110001...0 |1001110...1

2
|1001110...0 ±|0110001...1

2

i=1i=0

Figure 4.4: This figure summarizes the argument we used to generalize the
action of LBS(π/2) on the basis states for N qubits. We begin with an
arbritary state filled randomly with 1s and 0s and execute the operations to
recreate the LBS(π/2). Equations (4-53) tell us how to use C2(π/2) and the
action of the Hadamard was explained on section 2.3. The states depicted are
just for illustration purposes.

resolution from section 2.1.2 applies here. We have an effective way to achieve
the Heisenberg limit in interferometry with fermionic anyons.

For completeness purposes, consider that LBS(0) no longer entangles the
basis states:

LBS (0)|00〉 = |00〉+ |01〉√
2

, (4-58a)

LBS (0)|01〉 = |00〉 − |01〉√
2

, (4-58b)

LBS (0)|10〉 = |11〉+ |10〉√
2

, (4-58c)

LBS (0)|11〉 = |11〉 − |10〉√
2

. (4-58d)
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Which also happens for LBS(π):

LBS (π)|00〉 = |00〉 − |01〉√
2

, (4-59a)

LBS (π)|01〉 = |00〉+ |01〉√
2

, (4-59b)

LBS (π)|10〉 = |11〉 − |10〉√
2

, (4-59c)

LBS (π)|11〉 = |11〉+ |10〉√
2

. (4-59d)

We can now build our NOON-like interferometer with this new beam-
splitter as shown in figure 4.5:

H

Φ

Φ

ΦC2

C2
C2

C2
C2

C2
C2

C2

H

C2
C2

C2
C2

C2
C2

C2
C2

Φ

Φ

M

M

M

M

M

Q0

Q1

Qn-1

Qn-2

Cn

Qn

Figure 4.5: New interferometer for N qubits and phase φ. C2(π/2) takes
the place of the CNOTs. N classical bits are also generated to record the
measurements at the end.

Which leads to similar results to what we had in section 2.3: If we apply
two LBSs without a phase in the middle we recover the initial state:

LBS(π/2)× LBS(π/2) = I. (4-60)

But, for phase φ we get:

(LBS(π/2))ΦN(LBS(π/2))|00...0〉 = 1 + eNiφ

2 |00...0〉 ∓ 1− eNiφ
2 |11...1〉,

(4-61a)

(LBS(π/2))ΦN(LBS(π/2))|11...1〉 = 1 + eNiφ

2 |11...1〉 ± 1− eNiφ
2 |00...0〉,

(4-61b)

where Φ is a one-qubit phase gate. The same argument for the relative phase
after the LBS can be made here, but for these states all target qubits share
the value of the control. This way, N = 2m, for integer m, leads to -1 phase
for control qubit |0〉 and +1 phase for control qubit |1〉, and N = 2m+1 leads
to +1 phase for control qubit |0〉 and -1 phase for control qubit |1〉.
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The probabilities are unaffected by the relative phase. For input |00...0〉
we have:

P (|00...0〉) = 1 + cosNφ
2 , (4-62a)

P (|11...1〉) = 1− cosNφ
2 . (4-62b)

Again the probabilities are reversed for input |11...1〉 and we have what
we would expect for a NOON state in an interferometer, except for a new
relative phase depending on N , which does not affect the probabilities. Once
more, to see this remember the mappings we did in sections 2.1.2 and 2.3
respectively: |N〉ai |0〉aj = |0〉 and |0〉ai |N〉aj = |1〉; |0〉 = |00 . . . 0〉 and
|1〉 = |11 . . . 1〉.

Considering how similar these situations are it would be interesting to re-
peat the same procedure we have done in Qiskit for the previous interferometer
but now on this new circuit with gate C2(π/2).

The same comments from section 2.3 apply and we can switch out the
CNOT gates in the code for the new C2(π/2) gate. Again the Transpiler will
take care of the job of decomposing the C2(π/2) gate in combinations of gates
used by the IBM computer and assigning each logical qubit to a physical one
on the device.

We then run the new interferometer for two qubits the same amount of
times we did the first one on both the QASM simulator and the IBM Q 5
Yorktown. Afterwards we calculate the probabilities of obtaining state |00〉 as
the final state and exhibit the on figure 4.6. The theoretical prediction remains
the same:

P (00) = cos 2θ + 1
2 . (4-63)
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Figure 4.6: Simulated, experimental and theoretical results of the new circuit
for two qubits. Probabilities are calculated for one period in steps of π/8 for
θ.

The results are the same from before. This is expected as both the old
and the new circuits have depth of six. Let us increase the number of qubits
then.

For three qubits the theoretical prediction still remains the same and we
can see the plotted results on figure 4.7:

P (000) = cos 3θ + 1
2 . (4-64)
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Figure 4.7: Simulated, experimental and theoretical results of the new circuit
for three qubits. Probabilities are calculated for one period in steps of π/12
for θ.
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Again our results get considerably worse, this time though they are even
worse than the original circuit for three qubits on figure 2.17. This is most
likely due to the increase in depth for the new circuit, the original had depth
of twelve and this new one has depth seventeen.

The fitted function is:

P ′(000) = 0.55cos 3(θ − 0.04π) + 1
2 . (4-65)

This means a bigger decrease in amplitude and bigger phase shift. These results
are in-between those of figure 2.17 and 2.18, which is expected as this circuit
also has a depth value in-between those two.

Finally, let us do it for five qubits. Again the theoretical prediction does
not change and the results are plotted on figure 4.8:

P (00000) = cos 5θ + 1
2 (4-66)
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Figure 4.8: Simulated, experimental and theoretical results of the new circuit
for five qubits. Probabilities are calculated for one period in steps of π/20 for
θ.

We have an even worse result than that of figure 2.18, again due to the
increase in depth. The new circuit has depth of twenty-four versus the twenty
depth of the old one which translated to an even lower amplitude and increase
in the phase shift. This takes us to the new fitted function:

P ′(00000) = 0.33cos 5(θ + 0.23π) + 1
2 . (4-67)

As we see this new circuit gives us similar results and any differences
should be related to the increased depth due to the fact that C2(π/2) is not part
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of the elementary gate set that the IBM computer uses. While not necessarily
our main objective we have showed that we can replicate this interferometer
with gate C2(π/2) on other quantum computers based on different models and
that it in fact produces the same results of the old interferometer on section
2.3 built with CNOT gates. The code used to acquire and plot the data in this
section is also available in Appendix A.

The main takeaway we want to end this section on is that we can replicate
our NOON-like interferometer without CNOTs by using the operator C2(π/2).
This means it is completely plausible to recreate this interferometer using
only beamsplitters and phase-shifters for fermionic anyons of exchange phase
θ = π/2. We have effectively presented a linear optics setup that can produce
NOON-like interferometry for any number of anyons.

While for bosons we had that it was non-trivial to produce NOON-like
interferometry for N > 2 for these fermyonic anyons we simply need to scale
our setup accordingly. By increasing the number of anyons and the number of
optical elements we can achieve NOON-like interferometry in the logical basis
for any value of N .

In order to explicitly show it, for two qubits, one must, from figure 4.5:

– 1. Unroll each qubit into an anyon pair.

– 2. Directly substitute the C2, Hadamard and phase operators for the ap-
propriate sequences of phase-shifters and beamsplitters presented earlier.

On figure 4.9 we can see the gates and its equivalent setup with beamsplitters
and phase shifters:
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Figure 4.9: The gates used in our NOON-like interferometer for two qubits
written in terms of beamsplitters and phase-shifters. We assign colors to each
setup in order to be more compact.
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Note that to build a Hadamard gate we just need α = 0, β = 0, γ = π/4
and δ = 3π/2. A phase gate for phase φ can be done by α = 0, β = 0, γ = 0
and δ = φ. We can then write the whole setup in figure 4.10 as:

C2 C2

φ

C2 C2

H H
1
2

3
4

Detectors

φ

Figure 4.10: The NOON-like interferometer for two quibits written in terms of
beamsplitters and phase-shifters using the previously defined color code. Note
the detectors at the end to act as measurements.
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5
Conclusions and future work

Throughout this work we have presented a review on the most current
methods in interferometry as well as a broad perspective on anyons and how
they can be exploited to create universal quantum computers. Ultimately we
linked those two topics by presenting a computational model that relies on
linear optics of anyons and presented an interferometry setup on it.

Firstly, we focused on how particle statistics, either bosonic or fermionic,
can affect interferometry experiments while presenting different setups better
suited for each scenario. For bosons, we concentrated on the Mach-Zender
interferometer and discussed simple interferometry effects such as the Hong-
Ou-Mandel. We also took the opportunity to introduce the concept of phase
resolution and detailed how it is possible to have better resolution by utilising
NOON states to achieve the Heisenberg limit. Furthermore, we presented the
Jordan-Schwinger map which allows us to analyze an interferometer through
its action on the number operator and easily calculate phase resolution for any
setup knowing only the input states.

For fermions, we explained how the Mach-Zender interferometer is no
longer viable and how it is impossible to create a NOON state due to the Pauli
exclusion principle. To combat this we introduced two new setups, a Ramsey
inrerferometer and a Non-local interferometer, both of which are capable of
producing usable results despite being limited by fermionic statistics.

We ended Chapter 2 by presenting an approach to interferometry in
which we treat our setup as a circuit in a quantum computer. We presented a
circuit that can perform NOON-like interferometry and not only simulated it
but also executed the computation on real devices thanks to the Qiskit software
development kit. We concluded that while feasible our circuit cannot scale to
a high number of qubits as the amount of errors in the logical operations due
to decoherence effects start to grow alongside the depth of the circuit.

Our review of anyons on Chapter 3 began by giving a broad definition of
these particles and explaining that our interest in them is due to their unique
generalized statitics. We presented them in the light of a familiar effect, the
Ahanorov-Bohm, and proceeded to describe the quasi-particles in both abelian
and non-abelian variants. We introduced the braiding group and the concept
of anyon fusion and later generalized it for non-abelian and abelian anyons by
introducing the R-matrix and the F-matrix.

The end of the chapter focused on a specific model of non-abelian anyons
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that is relevant for quantum computation, Fibonacci anyons. We presented
the R-matrix and the F-matrix for such model and explained how it can
be exploited for computation by exhibiting an encoding, showing how to
obtain a basis of gates capable of universal computation and explaining how
measurements would be done on such a computer. Lastly we suggest how to
reconstruct our NOON-like interferometer in a quantum computer based on
Fibonnaci-anyons.

In Chapter 4 we concentrated on uniting the previous two. We presented
a computational model based on linear optics for anyons in which we could
replicate our NOON-like interferometer with known optical instruments, such
as beamsplitters and phase-shifters.

We began by introducing fermionic anyons and their unique commutation
relations, afterwards we presented an operator representation of the optical
elements that we utilized on chapter 2 and utilized them to describe linear
optics for the fermionic anyons. Furthermore, we introduced bosonic anyons
and re-described the Hong-Ou-Mandel effect for these new particles.

Lastly, we discussed how to create a universal quantum computer uti-
lizing linear optics for fermionic anyons. In doing so we encountered a new
entangling gate we called C2(θ) that is dependent on the anyonic exchange
phase and with it we managed to construct a scalable version of our NOON-
like interferometer that requires only beamsplitters, phase-shifters and anyonic
exchange phase π/2.

Considering the similarities between the original and the new interfer-
ometer we saw fit to repeat the same analysis we did with Qiskit on the new
one to check that we were in fact executing the same operation. We obtained
similar results on both interferometers and attributed any differences to an
increase in logical errors introduced due to higher depth.

A good next step would be to generalize our interferometer for any
exchange phase. While we have not done so we can safely say that this is
possible based on the work done by Bremner et al. [37]. It is possible to rewrite
the CNOT gates in the original interferometer with combinations of the C(θ)
and other one qubit gates. Such combinations would depend on the entangling
power of C(θ), which is to say that they would depend on the exchange phase
θ.

Another idea would be to look at how we can expand on section 4.3
and suggest a new computational model but now based on bosonic anyons.
This might open up the possibilities of working with the "standard" NOON
state |N,0〉+e

iNθ|0,N〉√
2 as we would no longer be limited by the Pauli exclusion

principle.
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7
Appendix A: Code used to implement quantum circuits

In sections 2.3 and 4.5 we presented a quantum circuits that implements our
NOON-like logical interferometer and proceeded to implement them on simulations
and real devices utilizing the Python programming language and the Qiskit software
development kit. In this appendix we’ve collected the code for doing so with some
commentary. Note that the code here is for the circuits with five qubits.

First, we begin by loading the necessary modules, setting up the IBM account
and initializing global variables such as the number of shots given to the circuits
and the arrays where the probabilities of the results will be recorded:

1 #Importing necessary modules
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from qiskit import *
5 from qiskit import Aer
6 from qiskit.visualization import plot_histogram, plot_state_city,

plot_circuit_layout↪→

7 from math import pi
8 import matplotlib.ticker as tck
9 %matplotlib inline #This is only necessary when working on a Jupyter

Notebook.↪→

10 #Loading IBM account and setting up backends
11 IBMQ.load_account()
12 provider = IBMQ.get_provider(group='open')
13 backend_sim = Aer.get_backend('qasm_simulator')
14 backend_exp = provider.get_backend('ibmqx2')
15 #Defining the amount of runs a circuit will undergo.
16 sh=1024
17 #Setting up arrays to record data from runs and
18 #theoretical predictions for plotting.
19 y_exp=np.array([])
20 y_sim=np.array([])
21 x=np.arange(0,(16.5)*pi/(4*5),pi/(4*5))
22 x_th=np.arange(0,4*pi/5,0.01)
23 y_th=((np.cos(x_th*5))+1)/2
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Next, it’s useful to define functions that implement the elements we want in
our circuit. The beamsplitter:

1 def BeamS(q,qr,c,cr,f):
2 circ=QuantumCircuit(qr,cr)
3 for i in range(q-1):
4 circ.cx(0,i+1)
5 circ.h(0)
6 for i in range(q-1):
7 circ.cx(0,i+1)
8 circ=f+circ
9 return circ

10 # The function receives the amount of qubits, a qubit register, classical
bits, a classical bit register and a circuit f to include the BS on.
It returns a new circuit with the BS attached.

↪→

↪→

The phasegates:

1 def phase(q,qr,c,cr,ph,f):
2 circ=QuantumCircuit(qr,cr)
3 for i in range(q):
4 circ.u1(ph,i)
5 return f+circ
6 # The function receives the amount of qubits, a qubit register, classical

bits, a classical bit register, a value for the phase and a circuit f
to include the phasegate on. It returns a new circuit with the
phasegate attached.

↪→

↪→

↪→

The measurements:

1 def measu(qr,cr,f):
2 meas=QuantumCircuit(qr,cr)
3 meas.barrier(qr[:])
4 meas.measure(qr[:],cr[:])
5 qc=f+meas
6 return qc
7 # The function receives, a qubit register, a classical bit register and a

circuit f to include the measurements on. It returns a new circuit
with the measurements attached.

↪→

↪→
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And, finally, the logical interferometer:

1 def MZI(q,qr,c,cr,ph):
2 MZ=QuantumCircuit(qr,cr)
3 #initialize state:
4 #Uncomment the next three lines to initialize state|1,..,1>
5 #vec=np.zeros(2**q)
6 #vec[(2**q)-1]=1
7 #MZ.initialize(vec, [qr[:]])
8 #BeamSplitter
9 MZ=BeamS(q,qr,c,cr,MZ)

10 #phase
11 MZ=phase(q,qr,c,cr,ph,MZ)
12 #BeamSplitter
13 MZ=BeamS(q,qr,c,cr,MZ)
14 #measurements
15 MZ=measu(qr,cr,MZ)
16 return MZ
17 # The function receives the amount of qubits, a qubit register, classical

bits, a classical bit register and a value for the phase. It returns a
circuit with our logical interferometer attached.

↪→

↪→

Now that we have defined the function that will build the interferometer we
must simply call them to create one with the desired parameters:

1 # Define the amount of qubits and classicla bits on the circuit
2 q=5
3 c=5
4 #Create the registers
5 qr=QuantumRegister(q)
6 cr=ClassicalRegister(c)
7 #Create the circuit with phase given by elements of array x
8 Mz=MZI(q,qr,c,cr,x[1])
9 #Draw the circuit and check it is correct.

10 Mz.draw()
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Then we can simulate our circuit:

1 #Simulation for phase (Pi/4)
2 #Crete circuit
3 MZ=MZI(q,qr,c,cr,x[1])
4 #Execute simulation on appropriate backend
5 job_sim = execute(MZ, backend_sim, shots=sh)
6 result_sim=job_sim.result()
7 counts_sim=result_sim.get_counts(MZ)
8 #Exhibit and record results in the appropriate array.
9 y_sim=np.append(y_sim,[counts_sim['00000']/sh])

10 plot_histogram(counts_sim)

Also, we run it on the real device:

1 #Experimental for phase (Pi/4)
2 #Utilize the transpiler to get the most efficient
3 #representation of the circuit
4 MZ_tp = transpile(MZ, backend=backend_exp, optimization_level=3,

initial_layout=[2,0,1,3,4])↪→

5 #check new depth
6 print('Depth:', MZ_tp.depth())
7 #check mapping of real and logical qubits
8 plot_circuit_layout(MZ_tp, backend_exp)
9 #Run the job on the real device and get the job ID

10 job_exp= execute(MZ_tp, backend=backend_exp)
11 id_job=job_exp.job_id()
12 job_exp = backend_exp.retrieve_job(id_job)
13 #Get the results. Save them to the proper array. Plot both experimental

and simulation results.↪→

14 result_exp=job_exp.result()
15 counts_exp=result_exp.get_counts()
16 y_exp=np.append(y_exp,[counts_exp['00000']/sh])
17 plot_histogram([counts_sim,counts_exp], legend=['sim', 'exp'])
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Now we have to repeat this process for every point of data we want to get and
finally plot them from the arrays that we are dumping the data. We can automate
this loop by doing:

1 #Create empty list of circuits.
2 circuits=[]
3 #Create circuits for varying phase and append to circuit list.
4 for i in range(len(x)): #
5 q=5
6 c=5
7 qr=QuantumRegister(q)
8 cr=ClassicalRegister(c)
9 MZ=MZI(q,qr,c,cr,x[i])

10 circuits.append(MZ)
11

12 #Execute the circuits on the list
13 job_sim=execute(circuits,backend=backend_sim, shots=sh)
14 result_sim=job_sim.result()
15

16 #Append results to an array with the probabilities
17 for i in range(len(x)):
18 counts_sim=result_sim.get_counts(circuits[i])
19 try:
20 counts_sim['00000']
21 except KeyError:
22 y_sim=np.append(y_sim,[0])
23 else:
24 y_sim=np.append(y_sim,[counts_sim['00000']/sh]) #Probabilities are

give by counts/shots↪→

For simulations. And for real experiments:

1 #Create empty list of circuits.
2 circuits=[]
3 #Create circuits for varying phase and append to circuit list.
4 for i in range(len(x)): #
5 q=5
6 c=5
7 qr=QuantumRegister(q)
8 cr=ClassicalRegister(c)
9 MZ=MZI(q,qr,c,cr,x[i])

10 circuits.append(MZ)
11 #Transpile every circuit on the list and append to new list
12 circuits_tp=[]
13 for i in range(17):
14 circuits_tp.append( transpile(circuits[i], backend=backend_exp,

optimization_level=3, initial_layout=[2,0,1,3,4]))↪→
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15

16 #Execute the list of circuits on the real device
17 job_exp= execute(circuits_tp, backend=backend_exp)
18 #Exhibit job id for retrieving results later
19 job_exp.job_id()
20 #Get results and append them to the appropriate array
21 job_exp = backend_exp.retrieve_job('5e88f6fb063ef70019f0cad4')
22 result_exp=job_exp.result()
23

24 for i in range(len(x)):
25 counts_exp=result_exp.get_counts(i)
26 try:
27 counts_exp['00000']
28 except KeyError:
29 y_exp=np.append(y_exp,[0])
30 else:
31 y_exp=np.append(y_exp,[counts_exp['00000']/sh])

And finally we plot the data:

1 fig, ax = plt.subplots()
2 #Define the fitting function for the experimental points
3 x_fit=np.arange(0,2*pi/5,0.01)
4 y_fit = 0.65*(np.sin((x_th*5)-(pi/1.6))+1)/2
5 #Plot all the results and the theoretical predicition.
6 ax.plot(x,y_sim,'bs',x,y_exp,'g^',x_th,y_th,x_th,y_fit)
7 plt.xlabel('$\Theta$')
8 plt.ylabel('Probability')
9 plt.title('Probabilities of measuring |00000>')

10 plt.legend(['Simulated', 'Experimental','Theoretical','Experimental
Fit'],loc=1)↪→

The same process has to be repeated for 2 and 3 qubits with the appropriate
changes and at the end we get the graphs from section 2.3.

On the section 2.3 we also execute a procedure of measurement error
mitigation. The code for doing so follows:

1 #Load the necessary modules.
2 from qiskit.ignis.mitigation.measurement import (complete_meas_cal,

CompleteMeasFitter)↪→

3 #Create a list with the calibration circuits that represents the basis
states.↪→

4 cal_circuits,state_labels=complete_meas_cal(qr=qr,
circlabel='measurement_calibration')↪→

5 #Execute the calibration and exhibit the job id.
6 cal_job=execute(cal_circuits, backend=backend_exp,

shots=8192,optimization_level=0)↪→
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7 cal_job.job_id()
8 #Use the results to build the change of basis matrix and a filter to apply

to the noisy results↪→

9 cal_job = backend_exp.retrieve_job('5e6a5b0dd00f3c00112df76a')
10 cal_results=cal_job.result()
11 meas_fitter=CompleteMeasFitter(cal_results,state_labels)
12 meas_filter=meas_fitter.filter
13 #Retrieve the noisy results
14 job_exp = backend_exp.retrieve_job('5e6a5adce987fe00114c4de5')
15 result_exp=job_exp.result()
16 #Apply the filter
17 mitigated_result=meas_filter.apply(result_exp)
18 #Plot a histogram with both counts for comparison
19 counts=result_exp.get_counts()
20 mitigated_counts=mitigated_result.get_counts()
21 fig, ax=plt.subplots()
22 fig=plot_histogram([counts_sim,counts,mitigated_counts])

Finally the last thing we do on Qiskit is run the same interferometer for a
different beamsplitter, one that uses C2 instead of CNOT. So we just change the
function that attaches the beamsplitter to the circuit and repeat the rest of the
code:

1 def C_op(ph): #Set a function that returns C^2 for a given phase
2 C = Operator([[(exp(-1j*pi/4)), 0, 0, 0], [0,

(1-1j*cos(ph))/(sqrt(2)), 0, (1j*sin(ph))/(sqrt(2))], [0,
0,(exp(1j*pi/4)) , 0], [0, (1j*sin(ph))/(sqrt(2)),0,
(1+1j*cos(ph))/(sqrt(2))]])

↪→

↪→

↪→

3 C2=C.power(2)
4 return C2
5

6 C2=C_op(pi/2) #Set the phase we want
7

8 def BeamS(q,qr,c,cr,f):
9 circ=QuantumCircuit(qr,cr)

10 for i in range(q-1):
11 circ.unitary(C2, [0, i+1], label='C2')
12 circ.h(0)
13 for i in range(q-1):
14 circ.unitary(C2, [0, i+1], label='C2')
15 circ=f+circ
16 return circ
17 # The function receives the amount of qubits, a qubit register, classical

bits, a classical bit register and a circuit f to include the BS on.
It returns a new circuit with the BS attached.

↪→

↪→
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All the code on this document was run on the following version of Qiskit:

Qiskit Software Version
Qiskit 0.17.0
Terra 0.12.0
Aer 0.4.1
Ignis 0.2.0
Aqua 0.6.5

IBM Q Provider 0.6.0

We can recover this information by inputting this command in a Jupyter notebook:

%qiskit_version_table
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